12 resultados para Pbo-zno-sio2
em Reposit
Resumo:
Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We report on structural, electronic, and optical properties of boron-doped, hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) at a substrate temperature of 150 degrees C. Film properties were studied as a function of trimethylboron-to-silane ratio and film thickness. The absorption loss of 25% at a wavelength of 400 nm was measured for the 20 nm thick films on glass and glass/ZnO:Al substrates. By employing the p(+) nc-Si:H as a window layer, complete p-i-n structures were fabricated and characterized. Low leakage current and enhanced sensitivity in the UV/blue range were achieved by incorporating an a-SiC:H buffer between the p- and i-layers.
Resumo:
A series of large area single layers and heterojunction cells in the assembly glass/ZnO:Al/p (SixC1-x:H)/i (Si:H)/n (SixC1-x:H)/Al (0
Resumo:
A series of large area single layers and glass/ZnO:AVp(SixC1-x:H)/i(Si:H)/n(SixC1-x:H)/AI (0 < x < 1) heterojunction cells were produced by plasma-enhanced chemical vapour deposition (PE-CVD) at low temperature. Junction properties, carrier transport and photogeneration are investigated from dark and illuminated current-voltage (J-V) and capacitance-voltage (C-V) characteristics. For the heterojunction cells atypical J-V characteristics under different illumination conditions are observed leading to poor fill factors. High series resistances around 106 Q are also measured. These experimental results were used as a basis for the numerical simulation of the energy band diagram, and the electrical field distribution of the structures. Further comparison with the sensor performance gave satisfactory agreement. Results show that the conduction band offset is the most limiting parameter for the optimal collection of the photogenerated carriers. As the optical gap increases and the conductivity of the doped layers decreases, the transport mechanism changes from a drift to a diffusion-limited process.
Resumo:
An optimized ZnO:Al/a-pin SixCl1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed. The LSP utilizes light induced depletion layers as detector and a laser beam for readout. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Experimental data reveal that the large optical gap and the low conductivity of the doped a-SixC1-x:H layers are responsible by an induced inversion layer at the illuminated interfaces which blocks the carrier collection. These insulator-like layers act as MIS gates preventing image smearing. The physical background of the LSP is discussed.
Resumo:
An optimized ZnO:Al/a-pin SixC1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed and the read-out parameters improved. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Data reveals that for sensors with wide band gap doped layers an increase on the image signal optimized to the blue is achieved with a dynamic range of two orders of magnitude, a responsivity of 6 mA W-1 and a sensitivity of 17 muW cm(-2) at 530 nm. The main output characteristics such as image responsivity, resolution, linearity and dynamic range were analyzed under reverse, forward and short circuit modes. The results show that the sensor performance can be optimized in short circuit mode. A trade-off between the scan time and the required resolution is needed since the spot size limits the resolution due to the cross-talk between dark and illuminated regions leading to blurring effects.
Resumo:
Amorphous glass/ZnO-Al/p(a-Si:H)/i(a-Si:H)/n(a-Si1-xCx:H)/Al imagers with different n-layer resistivities were produced by plasma enhanced chemical vapour deposition technique (PE-CVD). An image is projected onto the sensing element and leads to spatially confined depletion regions that can be readout by scanning the photodiode with a low-power modulated laser beam. The essence of the scheme is the analog readout, and the absence of semiconductor arrays or electrode potential manipulations to transfer the information coming from the transducer. The influence of the intensity of the optical image projected onto the sensor surface is correlated with the sensor output characteristics (sensitivity, linearity blooming, resolution and signal-to-noise ratio) are analysed for different material compositions (0.5 < x < 1). The results show that the responsivity and the spatial resolution are limited by the conductivity of the doped layers. An enhancement of one order of magnitude in the image intensity signal and on the spatial resolution are achieved at 0.2 mW cm(-2) light flux by decreasing the n-layer conductivity by the same amount. A physical model supported by electrical simulation gives insight into the image-sensing technique used.
Resumo:
We discuss the operation of a new type of optical sensor (MISCam) based on a metal-insulator-semiconductor (MIS) structure. The operation principle relies on light-induced changes of the band bending and barrier height at the interface between semiconductor and insulator. An image is obtained from the quenching of the ac signal in analogy to the principle of the laser-scanned photodiode (LSP). Lateral resolution depends on the semiconductor material chosen. We have characterised the MIS structures by C-V, I-V, and spectral response measurements testing different types of insulators like a-Si3N4, SiO2, and AlN. The presence of slow interface charges allows for image memory. Colour sensors can be realised by controlling sign and magnitude of the electric fields in the base and the interface region.
Resumo:
ZnO:Al/p (SiC:H)/i (Si:H)/n (SiC:H) large area image and colour sensor are analysed. Carrier transport and collection efficiency are investigated from dark and illuminated current-voltage (I-V) dependence and spectral response measurements under different optical and electrical bias conditions. Results show that the carrier collection depends on the optical bias and on the applied voltage. By changing the electrical bias around the open circuit voltage it is possible to filter the absorption at a given wavelength and so to tune the spectral sensitivity of the device. Transport and optical modelling give insight into the internal physical process and explain the bias control of the spectral response and the image and colour sensing properties of the devices.
Resumo:
This article reports on the structural, electronic, and optical properties of boron-doped hydrogenated nanocrystalline silicon (nc-Si: H) thin films. The films were deposited by plasma-enhanced chemical vapour deposition (PECVD) at a substrate temperature of 150 degrees C. Crystalline volume fraction and dark conductivity of the films were determined as a function of trimethylboron-to-silane flow ratio. Optical constants of doped and undoped nc-Si: H were obtained from transmission and reflection spectra. By employing p(+) nc-Si: H as a window layer combined with a p' a-SiC buffer layer, a-Si: H-based p-p'-i-n solar cells on ZnO:Al-coated glass substrates were fabricated. Device characteristics were obtained from current-voltage and spectral-response measurements. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica