30 resultados para Distributed monitoring
em Reposit
Resumo:
One of the most efficient approaches to generate the side information (SI) in distributed video codecs is through motion compensated frame interpolation where the current frame is estimated based on past and future reference frames. However, this approach leads to significant spatial and temporal variations in the correlation noise between the source at the encoder and the SI at the decoder. In such scenario, it would be useful to design an architecture where the SI can be more robustly generated at the block level, avoiding the creation of SI frame regions with lower correlation, largely responsible for some coding efficiency losses. In this paper, a flexible framework to generate SI at the block level in two modes is presented: while the first mode corresponds to a motion compensated interpolation (MCI) technique, the second mode corresponds to a motion compensated quality enhancement (MCQE) technique where a low quality Intra block sent by the encoder is used to generate the SI by doing motion estimation with the help of the reference frames. The novel MCQE mode can be overall advantageous from the rate-distortion point of view, even if some rate has to be invested in the low quality Intra coding blocks, for blocks where the MCI produces SI with lower correlation. The overall solution is evaluated in terms of RD performance with improvements up to 2 dB, especially for high motion video sequences and long Group of Pictures (GOP) sizes.
Resumo:
Motion compensated frame interpolation (MCFI) is one of the most efficient solutions to generate side information (SI) in the context of distributed video coding. However, it creates SI with rather significant motion compensated errors for some frame regions while rather small for some other regions depending on the video content. In this paper, a low complexity Infra mode selection algorithm is proposed to select the most 'critical' blocks in the WZ frame and help the decoder with some reliable data for those blocks. For each block, the novel coding mode selection algorithm estimates the encoding rate for the Intra based and WZ coding modes and determines the best coding mode while maintaining a low encoder complexity. The proposed solution is evaluated in terms of rate-distortion performance with improvements up to 1.2 dB regarding a WZ coding mode only solution.
Resumo:
Exposure assessment is an important step of risk assessment process and has evolved more quickly than perhaps any aspect of the four-step risk paradigm (hazard identification, exposure assessment, dose-response analysis, and risk characterization). Nevertheless, some epidemiological studies have associated adverse health effects to a chemical exposure with an inadequate or absent exposure quantification. In addition to the metric used, the truly representation of exposure by measurements depends on: the strategy of sampling, random collection of measurements, and similarity between the measured and unmeasured exposure groups. Two environmental monitoring methodologies for formaldehyde occupational exposure were used to assess the influence of metric selection in exposure assessment and, consequently, in risk assessment process.
Resumo:
Nowadays, the cooperative intelligent transport systems are part of a largest system. Transportations are modal operations integrated in logistics and, logistics is the main process of the supply chain management. The supply chain strategic management as a simultaneous local and global value chain is a collaborative/cooperative organization of stakeholders, many times in co-opetition, to perform a service to the customers respecting the time, place, price and quality levels. The transportation, like other logistics operations must add value, which is achieved in this case through compression lead times and order fulfillments. The complex supplier's network and the distribution channels must be efficient and the integral visibility (monitoring and tracing) of supply chain is a significant source of competitive advantage. Nowadays, the competition is not discussed between companies but among supply chains. This paper aims to evidence the current and emerging manufacturing and logistics system challenges as a new field of opportunities for the automation and control systems research community. Furthermore, the paper forecasts the use of radio frequency identification (RFID) technologies integrated into an information and communication technologies (ICT) framework based on distributed artificial intelligence (DAI) supported by a multi-agent system (MAS), as the most value advantage of supply chain management (SCM) in a cooperative intelligent logistics systems. Logistical platforms (production or distribution) as nodes of added value of supplying and distribution networks are proposed as critical points of the visibility of the inventory, where these technological needs are more evident.
Resumo:
The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM(10) patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 µm(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
Although a great body of literature exists concerning the ingestion of food contaminated with aflatoxin, there are still few studies regarding mycotoxin inhalation in occupational settings. Since mycotoxins are relatively non-volatile, inhalation exposure is cause by inhalation of airborne fungal particulates or fungi-contaminated substrates that contain aflatoxin. We intend to know if there is occupational exposure to aflatoxin in Portuguese poultry and swine production. A total of 19 individuals (11 swine; 8 poultry) agreed and provided blood samples during the course of this investigation. Measurement of AFB1 was performed by ELISA. The samples were treated with pronase (Merck), wash in a Column C18 and purification was made with immunoaffinity columns (R.biopharma), specific for AFB1. It was applied statistical test (Mann-Whitney) to verified statistical difference in AFB1 results between the two settings. Results varied with concentrations from
Resumo:
The advances made in channel-capacity codes, such as turbo codes and low-density parity-check (LDPC) codes, have played a major role in the emerging distributed source coding paradigm. LDPC codes can be easily adapted to new source coding strategies due to their natural representation as bipartite graphs and the use of quasi-optimal decoding algorithms, such as belief propagation. This paper tackles a relevant scenario in distributedvideo coding: lossy source coding when multiple side information (SI) hypotheses are available at the decoder, each one correlated with the source according to different correlation noise channels. Thus, it is proposed to exploit multiple SI hypotheses through an efficient joint decoding technique withmultiple LDPC syndrome decoders that exchange information to obtain coding efficiency improvements. At the decoder side, the multiple SI hypotheses are created with motion compensated frame interpolation and fused together in a novel iterative LDPC based Slepian-Wolf decoding algorithm. With the creation of multiple SI hypotheses and the proposed decoding algorithm, bitrate savings up to 8.0% are obtained for similar decoded quality.
Resumo:
This paper presents a distributed model predictive control (DMPC) for indoor thermal comfort that simultaneously optimizes the consumption of a limited shared energy resource. The control objective of each subsystem is to minimize the heating/cooling energy cost while maintaining the indoor temperature and used power inside bounds. In a distributed coordinated environment, the control uses multiple dynamically decoupled agents (one for each subsystem/house) aiming to achieve satisfaction of coupling constraints. According to the hourly power demand profile, each house assigns a priority level that indicates how much is willing to bid in auction for consume the limited clean resource. This procedure allows the bidding value vary hourly and consequently, the agents order to access to the clean energy also varies. Despite of power constraints, all houses have also thermal comfort constraints that must be fulfilled. The system is simulated with several houses in a distributed environment.
Resumo:
In distributed video coding, motion estimation is typically performed at the decoder to generate the side information, increasing the decoder complexity while providing low complexity encoding in comparison with predictive video coding. Motion estimation can be performed once to create the side information or several times to refine the side information quality along the decoding process. In this paper, motion estimation is performed at the decoder side to generate multiple side information hypotheses which are adaptively and dynamically combined, whenever additional decoded information is available. The proposed iterative side information creation algorithm is inspired in video denoising filters and requires some statistics of the virtual channel between each side information hypothesis and the original data. With the proposed denoising algorithm for side information creation, a RD performance gain up to 1.2 dB is obtained for the same bitrate.
Resumo:
Low-density parity-check (LDPC) codes are nowadays one of the hottest topics in coding theory, notably due to their advantages in terms of bit error rate performance and low complexity. In order to exploit the potential of the Wyner-Ziv coding paradigm, practical distributed video coding (DVC) schemes should use powerful error correcting codes with near-capacity performance. In this paper, new ways to design LDPC codes for the DVC paradigm are proposed and studied. The new LDPC solutions rely on merging parity-check nodes, which corresponds to reduce the number of rows in the parity-check matrix. This allows to change gracefully the compression ratio of the source (DCT coefficient bitplane) according to the correlation between the original and the side information. The proposed LDPC codes reach a good performance for a wide range of source correlations and achieve a better RD performance when compared to the popular turbo codes.
Resumo:
This paper presents a novel moving target indicator which is selective with respect to a direction of interest. Preliminary results indicate that the obtained selectivity may have high interest in civil traffic monitoring using single channel SAR data.
Resumo:
Processes are a central entity in enterprise collaboration. Collaborative processes need to be executed and coordinated in a distributed Computational platform where computers are connected through heterogeneous networks and systems. Life cycle management of such collaborative processes requires a framework able to handle their diversity based on different computational and communication requirements. This paper proposes a rational for such framework, points out key requirements and proposes it strategy for a supporting technological infrastructure. Beyond the portability of collaborative process definitions among different technological bindings, a framework to handle different life cycle phases of those definitions is presented and discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a distributed predictive control methodology for indoor thermal comfort that optimizes the consumption of a limited shared energy resource using an integrated demand-side management approach that involves a power price auction and an appliance loads allocation scheme. The control objective for each subsystem (house or building) aims to minimize the energy cost while maintaining the indoor temperature inside comfort limits. In a distributed coordinated multi-agent ecosystem, each house or building control agent achieves its objectives while sharing, among them, the available energy through the introduction of particular coupling constraints in their underlying optimization problem. Coordination is maintained by a daily green energy auction bring in a demand-side management approach. Also the implemented distributed MPC algorithm is described and validated with simulation studies.
Resumo:
Considering that recent european high-speed railway system has a traction power system of kV 50 Hz, which causes electromagnetic emission for the outside world, it is important to dimension the railway system emissions, using a frequency/distance dependent propagation model. This paper presents an enhanced theoretical model for VLF to UHF propagation, railway system oriented. It introduces the near field approach (crucial in low frequency propagation) and also considers the source characteristics and type of measuring antenna. Simulations are presented, and comparisons are set with earlier far field models. Using the developed model, a real case study was performed in partnership with Refer Telecom (portuguese telecom operator for railways). The new propagation model was used in order to predict the future high-speed railway electromagnetic emissions in the Lisbon north track. The results show the model's prediction capabilities and also its applicability to realistic scenarios.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.