9 resultados para x ray energy dispersive spectroscopy

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reuse of waste fluid catalytic cracking (FCC) catalyst as partial surrogate for cement can reduce the environmental impact of both the oil-refinery and cement production industries [1,2]. FCC catalysts can be considered as pozzolanic materials since in the presence of water they tend to chemically react with calcium hydroxide to produce compounds possessing cementitious properties [3,4]. In addition, partial replacement of cement with FCC catalysts can enhance the performance of pastes and mortars, namely by improving their compressive strength [5,6]. In the present work the reaction of waste FCC catalyst with Ca(OH)2 has been investigated after a curing time of 28 days by scanning electron microscopy (SEM) with electron backscattered signal (BSE) combined with X-ray energy dispersive spectroscopy (EDS) carried out with a JEOL JSM 7001F instrument operated at 15 kV coupled to an INCA pentaFetx3 Oxford spectrometer. The polished cross-sections of FCC particles embedded in resin have also been evaluated by atomic force microscopy (AFM) in contact mode (CM) using a NanoSurf EasyScan 2 instrument. The SEM/EDS results revealed that an inward migration of Ca occurred during the reaction. A weaker outward migration of Si and Al was also apparent (Fig. 1). The migration of Ca was not homogeneous and tended to follow high-diffusivity paths within the porous waste FCC catalyst particles. The present study suggests that the porosity of waste FCC catalysts is key for the migration/reaction of Ca from the surrounding matrix, playing an important role in the pozzolanic activity of the system. The topography images and surface roughness parameters obtained by atomic force microscopy can be used to infer the local porosity in waste FCC catalyst particles (Fig. 2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most active phase of the fluid catalytic cracking (FCC) catalyst, used in oil refinery, is zeolite-Y which is an aluminosilicate with a high internal and external surface area responsible for its high reactivity. Waste FCC catalyst is potentially able to be reused in cement-based materials - as an additive - undergoing a pozzolanic reaction with calcium hydroxide (Ca(OH)2) formed during cement hydration [1-3]. This reaction produces additional strength-providing reaction products i.e., calcium silicate hydrate (C-S-H) and hydrous calcium aluminates (C-A-H) which exact chemical formula and structure are still unknown. Partial replacement of cement by waste FCC catalyst has two key advantages: (1) lowering of cement production with the associated pollution reduction as this industry represents one of the largest sources of man-made CO2 emissions, and (2) improving the mechanical properties and durability of cement-based materials. Despite these advantages, there is a lack of fundamental knowledge on pozzolanic reaction mechanisms as well as spatial distribution of porosity and solid phases interactions at the microstructural level and consequently their relationship with macroscopical engineering properties of catalyst/cement blends. Within this scope, backscattered electron (BSE) images acquired in a scanning electron microscope (SEM) equipped with Energy-Dispersive Spectroscopy (EDS) and by X-ray diffraction were used to investigate chemical composition of hydration products and to analyse spatial information of the microstructure of waste FCC catalyst blended cement mortars. For this purpose mortars with different levels of cement substitution by waste catalyst as well as with different hydration ages, were prepared. The waste FCC catalyst used is produced by the Portuguese refinery company Petrogal S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports on a-Si:H-based low-leakage blue-enhanced photodiodes for dual-screen x-ray imaging detectors. Doped nanocrystalline silicon was incorporated in both the n- and p-type regions to reduce absorption losses for light incoming from the top and bottom screens. The photodiode exhibits a dark current density of 900 pA/cm(2) and an external quantum efficiency up to 90% at a reverse bias of 5 V. In the case of illumination through the tailored p-layer, the quantum efficiency of 60% at a 400 nm wavelength is almost double that for the conventional a-Si:H n-i-p photodiode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel [Ru(L)(Tpms)]Cl and [Ru(L)(Tpms(Ph))]Cl complexes (L = p-cymene, benzene, or hexamethylbenzene, Tpms = tris(pyrazolyl)-methanesulfonate, Tpms(Ph) = tris(3-phenylpyrazoly)methanesulfonate) have been prepared by reaction of [Ru(L)(mu-Cl)(2)](2) with Li[Tpms] and Li[Tpms(Ph)], respectively. [Ru(p-cymene)(Tpms)]BF4 has been synthesized through a metathetic reaction of [Ru(p-cymene)(Tpms)]Cl with AgBF4. [RuCl(cod)(Tpms)] (cod = 1,5-cyclooctadiene) and [RuCl(cod)(Tpms(Ph))] are also reported, being obtained by reaction of [RuCl2(cod)(MeCN)(2)] with Li[Tpms] and Li[Tpms(Ph)], respectively. The structures of the complexes and the coordination modes of the ligands have been established by IR, NMR, and single-crystal X-ray diffraction (for [RuL(Tpms)]X (L = p-cymene or HMB, X = Cl; L = p-cymene, X = BF4)) studies. Electrochemical studies showed that each complex undergoes a single-electron R-II -> R-III oxidation at a potential measured by cyclic voltammetry, allowing to compare the electron-donor characters of the tris(pyrazolyl)methanesulfonate and arene ligands, and to estimate, for the first time, the values of the Lever E-L ligand parameter for Tmps(Ph), HMB, and cod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - To compare the image quality and effective dose applying the 10 kVp rule with manual mode acquisition and AEC mode in PA chest X-ray. Method - 68 images (with and without lesions) were acquired using an anthropomorphic chest phantom using a Wolverson Arcoma X-ray unit. These images were compared against a reference image using the 2 alternative forced choice (2AFC) method. The effective dose (E) was calculated using PCXMC software using the exposure parameters and the DAP. The exposure index (lgM provided by Agfa systems) was recorded. Results - Exposure time decreases more when applying the 10 kVp rule with manual mode (50%–28%) when compared with automatic mode (36%–23%). Statistical differences for E between several ionization chambers' combinations for AEC mode were found (p = 0.002). E is lower when using only the right AEC ionization chamber. Considering the image quality there are no statistical differences (p = 0.348) between the different ionization chambers' combinations for AEC mode for images with no lesions. Considering lgM values, it was demonstrated that they were higher when the AEC mode was used compared to the manual mode. It was also observed that lgM values obtained with AEC mode increased as kVp value went up. The image quality scores did not demonstrate statistical significant differences (p = 0.343) for the images with lesions comparing manual with AEC mode. Conclusion - In general the E is lower when manual mode is used. By using the right AEC ionising chamber under the lung the E will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the visibility of the lesions or image quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray fluoroscopy is essential in both diagnosis and medical intervention, although it may contribute to significant radiation doses to patients that have to be optimised and justified. Therefore, it is crucial to the patient to be exposed to the lowest achievable dose without compromising the image quality. The purpose of this study was to perform an analysis of the quality control measurements, particularly dose rates, contrast and spatial resolution of Portuguese fluoroscopy equipment and also to provide a contribution to the establishment of reference levels for the equipment performance parameters. Measurements carried out between 2007 and 2013 on 143 fluoroscopy equipment distributed by 34 nationwide health units were analysed. The measurements suggest that image quality and dose rates of Portuguese equipment are congruent with other studies, and in general, they are as per the Portuguese law. However, there is still a possibility of improvements intending optimisation at a national level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare image quality and effective dose when the 10 kVp rule is applied with manual and AEC mode in PA chest X-ray. Methods and Materials: A total of 68 images (with and without lesions) were acquired of an anthropomorphic chest phantom in a Wolverson Arcoma X-ray unit. The images were evaluated against a reference image using image quality criteria and the 2 alternative forced choice (2 AFC) method by five radiographers. The effective dose was calculated using PCXMC software using the exposure parameters and DAP. The exposure index (lgM) was recorded. Results: Exposure time decreases considerably when applying the 10 kVp rule in manual mode (50%-28%) compared to AEC mode (36%-23%). Statistical differences for effective dose between several AEC modes were found (p=0.002). The effective dose is lower when using only the right AEC ionization chamber. Considering image quality, there are no statistical differences (p=0.348) between the different AEC modes for images with no lesions. Using a higher kVp value the lgM values will also increase. The lgM values showed significant statistical differences (p=0.000). The image quality scores did not present statistically significant differences (p=0.043) for the images with lesions when comparing manual with AEC modes. Conclusion: In general, the dose is lower in the manual mode. By using the right AEC ionising chamber the effective dose will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the detectability of the lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate whether standard X-ray acquisition factors for orbital radiographs are suitable for the detection of ferromagnetic intra-ocular foreign bodies in patients undergoing MRI. Method: 35 observers, at varied levels of education in radiography, attending a European Dose Optimisation EURASMUS Summer School were asked to score 24 images of varying acquisition factors against a clinical standard (reference image) using two alternative forced choice. The observers were provided with 12 questions and a 5 point Likert scale. Statistical tests were used to validate the scale, and scale reliability was also measured. The images which scored equal to, or better than, the reference image (36) were ranked alongside their corresponding effective dose (E), the image with the lowest dose equal to or better than the reference is considered the new optimum acquisition factors. Results: Four images emerged as equal to, or better than, the reference in terms of image quality. The images were then ranked in order of E. Only one image that scored the same as the reference had a lower dose. The reference image had a mean E of 3.31μSv, the image that scored the same had an E of 1.8μSv. Conclusion: Against the current clinical standard exposure factors of 70kVp, 20mAs and the use of an anti- scatter grid, one image proved to have a lower E whilst maintaining the same level of image quality and lesion visibility. It is suggested that the new exposure factors should be 60kVp, 20mAs and still include the use of an anti-scatter grid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented. (C) 2014 Elsevier B.V. All rights reserved.