4 resultados para thrombocyte count
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Myocardial Perfusion Gated Single Photon Emission Tomography (Gated-SPET) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV). The purpose of this study is to evaluate the influence of the total number of counts acquired from myocardium, in the calculation of myocardial functional parameters using routine software procedures. Methods: Gated-SPET studies were simulated using Monte Carlo GATE package and NURBS phantom. Simulated data were reconstructed and processed using the commercial software package Quantitative Gated-SPECT. The Bland-Altman and Mann-Whitney-Wilcoxon tests were used to analyze the influence of the number of total counts in the calculation of LV myocardium functional parameters. Results: In studies simulated with 3MBq in the myocardium there were significant differences in the functional parameters: Left ventricular ejection fraction (LVEF), end-systolic volume (ESV), Motility and Thickness; between studies acquired with 15s/projection and 30s/projection. Simulations with 4.2MBq show significant differences in LVEF, end-diastolic volume (EDV) and Thickness. Meanwhile in the simulations with 5.4MBq and 8.4MBq the differences were statistically significant for Motility and Thickness. Conclusion: The total number of counts per simulation doesn't significantly interfere with the determination of Gated-SPET functional parameters using the administered average activity of 450MBq to 5.4MBq in myocardium.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular. Área de especialização: Ultrassonografia Cardiovascular.
Resumo:
Alzheimer Disease (AD) is characterized by progressive cognitive decline and dementia. Earlier diagnosis and classification of different stages of the disease are currently the main challenges and can be assessed by neuroimaging. With this work we aim to evaluate the quality of brain regions and neuroimaging metrics as biomarkers of AD. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox functionalities were used to study AD by T1weighted, Diffusion Tensor Imaging and 18FAV45 PET, with data obtained from the AD Neuroimaging Initiative database, specifically 12 healthy controls (CTRL) and 33 patients with early mild cognitive impairment (EMCI), late MCI (LMCI) and AD (11 patients/group). The metrics evaluated were gray-matter volume (GMV), cortical thickness (CThk), mean diffusivity (MD), fractional anisotropy (FA), fiber count (FiberConn), node degree (Deg), cluster coefficient (ClusC) and relative standard-uptake-values (rSUV). Receiver Operating Characteristic (ROC) curves were used to evaluate and compare the diagnostic accuracy of the most significant metrics and brain regions and expressed as area under the curve (AUC). Comparisons were performed between groups. The RH-Accumbens/Deg demonstrated the highest AUC when differentiating between CTRLEMCI (82%), whether rSUV presented it in several brain regions when distinguishing CTRL-LMCI (99%). Regarding CTRL-AD, highest AUC were found with LH-STG/FiberConn and RH-FP/FiberConn (~100%). A larger number of neuroimaging metrics related with cortical atrophy with AUC>70% was found in CTRL-AD in both hemispheres, while in earlier stages, cortical metrics showed in more confined areas of the temporal region and mainly in LH, indicating an increasing of the spread of cortical atrophy that is characteristic of disease progression. In CTRL-EMCI several brain regions and neuroimaging metrics presented AUC>70% with a worst result in later stages suggesting these indicators as biomarkers for an earlier stage of MCI, although further research is necessary.
Resumo:
The operation of generalized Marx-type solid-state bipolar modulators is discussed and compared with simplified Marx-derived circuits, to evaluate their capability to deal with various load conditions. A comparative analysis on the number of switches per cell, fiber optic trigger count, losses, and switch hold-off voltages has been made. A circuit topology is obtained as a compromise in terms of operating performance, trigger simplicity, and switching losses. A five-stage laboratory prototype of this circuit has been assembled using 1200 V insulated gate bipolar transistors (IGBTs) and diodes, operating with 1000 V dc input voltage and 1 kHz frequency, giving 5 kV bipolar pulses, with 2.5 mu s pulse width and 5 mu s relaxation time into resistive, capacitive, and inductive loads.