15 resultados para thermodynamic theory
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
We generalize the Flory-Stockmayer theory of percolation to a model of associating (patchy) colloids, which consists of hard spherical particles, having on their surfaces f short-ranged-attractive sites of m different types. These sites can form bonds between particles and thus promote self-assembly. It is shown that the percolation threshold is given in terms of the eigenvalues of a m x m matrix, which describes the recursive relations for the number of bonded particles on the ith level of a cluster with no loops; percolation occurs when the largest of these eigenvalues equals unity. Expressions for the probability that a particle is not bonded to the giant cluster, for the average cluster size and the average size of a cluster to which a randomly chosen particle belongs, are also derived. Explicit results for these quantities are computed for the case f = 3 and m = 2. We show how these structural properties are related to the thermodynamics of the associating system by regarding bond formation as a (equilibrium) chemical reaction. This solution of the percolation problem, combined with Wertheim's thermodynamic first-order perturbation theory, allows the investigation of the interplay between phase behavior and cluster formation for general models of patchy colloids.
Resumo:
Although stock prices fluctuate, the variations are relatively small and are frequently assumed to be normal distributed on a large time scale. But sometimes these fluctuations can become determinant, especially when unforeseen large drops in asset prices are observed that could result in huge losses or even in market crashes. The evidence shows that these events happen far more often than would be expected under the generalized assumption of normal distributed financial returns. Thus it is crucial to properly model the distribution tails so as to be able to predict the frequency and magnitude of extreme stock price returns. In this paper we follow the approach suggested by McNeil and Frey (2000) and combine the GARCH-type models with the Extreme Value Theory (EVT) to estimate the tails of three financial index returns DJI,FTSE 100 and NIKKEI 225 representing three important financial areas in the world. Our results indicate that EVT-based conditional quantile estimates are much more accurate than those from conventional AR-GARCH models assuming normal or Student’s t-distribution innovations when doing out-of-sample estimation (within the insample estimation, this is so for the right tail of the distribution of returns).
Resumo:
The solubility of ethene in water and in the fermentation medium of Xanthobacter Py(2) was determined with a Ben-Naim-Baer type apparatus. The solubility measurements were carried out in the temperature range of (293.15 to 323.15) K and at atmospheric pressure with a precision of about +/- 0.3 %. The Ostwald coefficients, the mole fractions of the dissolved ethene, at the gas partial pressure of 101.325 kPa, and the Henry coefficients, at the water vapor pressure, were calculated using accurate thermodynamic relations. A comparison between the solubility of ethene in water and in the cultivation medium has shown that this gas is about 2.4 % more soluble in pure water. On the other hand, from the solubility temperature dependence, the Gibbs energy, enthalpy, and entropy changes for the process of transferring the solute from the gaseous phase to the liquid solutions were also determined. Moreover, the perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS) model was used for the prediction of the solubility of ethene in water. New parameters, k(ij), are proposed for this system, and it was found that using a ky temperature-dependent PC-SAFT EOS describes more accurately the behavior solubilities of ethene in water at 101.325 kPa, improving the deviations to 1 %.
Resumo:
We investigate the phase behaviour of 2D mixtures of bi-functional and three-functional patchy particles and 3D mixtures of bi-functional and tetra-functional patchy particles by means of Monte Carlo simulations and Wertheim theory. We start by computing the critical points of the pure systems and then we investigate how the critical parameters change upon lowering the temperature. We extend the successive umbrella sampling method to mixtures to make it possible to extract information about the phase behaviour of the system at a fixed temperature for the whole range of densities and compositions of interest. (C) 2013 AIP Publishing LLC.
Resumo:
The development of children's school achievements in mathematics is one of the most important aims of education in Poland. The results of research concerning monitoring of school achievements in maths is not optimistic. We can observe low levels of children’s understanding of the merits of maths, self-developed strategies in solving problems and practical usage of maths skills. This article frames the discussion of this problem in its psychological and didactic context and analyses the causes as they relate to school practice in teaching maths
Resumo:
We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.
Resumo:
We present a study of the effects of nanoconfinement on a system of hard Gaussian overlap particles interacting with planar substrates through the hard-needle-wall potential, extending earlier work by two of us [D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001)]. Here, we consider the case of hybrid films, where one of the substrates induces strongly homeotropic anchoring, while the other favors either weakly homeotropic or planar anchoring. These systems are investigated using both Monte Carlo simulation and density-functional theory, the latter implemented at the level of Onsager's second-virial approximation with Parsons-Lee rescaling. The orientational structure is found to change either continuously or discontinuously depending on substrate separation, in agreement with earlier predictions by others. The theory is seen to perform well in spite of its simplicity, predicting the positional and orientational structure seen in simulations even for small particle elongations.
Resumo:
We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self- assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension ofWertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r epsilon(AB)/epsilon(AA) of the interaction between patches A and B, epsilon(AB), and between A patches, epsilon(AA) (epsilon(BB) is set to theta) as well as the relative position of the A patches, i.e., the angle. between the (lattice) directions of the A patches. We found that both r and theta (60 degrees, 90 degrees, or 120 degrees) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for theta = 120 degrees but deteriorates as. decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings. (C) 2014 AIP Publishing LLC.
Resumo:
We show that a self-generated set of combinatorial games, S. may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question "Is there a set which will give a non-distributive but modular lattice?" appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We numerically study a simple fluid composed of particles having a hard-core repulsion complemented by two patchy attractive sites on the particle poles. An appropriate choice of the patch angular width allows for the formation of ring structures which, at low temperatures and low densities, compete with the growth of linear aggregates. The simplicity of the model makes it possible to compare simulation results and theoretical predictions based on the Wertheim perturbation theory, specialized to the case in which ring formation is allowed. Such a comparison offers a unique framework for establishing the quality of the analytic predictions. We find that the Wertheim theory describes remarkably well the simulation results.
Resumo:
We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.
Resumo:
We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by epsilon(AA) and by epsilon(AB) = r epsilon(AA), respectively. The angle theta between the 2 A-patches on each particle is fixed at 601, 90 degrees or 120 degrees. For values of r below 1/2 and above a threshold r(th)(theta) the models exhibit a phase diagram with two critical points. Both theory and simulation predict that rth increases when theta decreases. We show that the mechanism that prevents phase separation for models with decreasing values of theta is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings ( loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of theta, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.
Resumo:
With the help of a unique combination of density functional theory and computer simulations, we discover two possible scenarios, depending on concentration, for the hierarchical self-assembly of magnetic nanoparticles on cooling. We show that typically considered low temperature clusters, i.e. defect-free chains and rings, merge into more complex branched structures through only three types of defects: four-way X junctions, three-way Y junctions and two-way Z junctions. Our accurate calculations reveal the predominance of weakly magnetically responsive rings cross-linked by X defects at the lowest temperatures. We thus provide a strategy to fine-tune magnetic and thermodynamic responses of magnetic nanocolloids to be used in medical and microfluidics applications.