11 resultados para quantum efficiency
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We report a field-effect phototransistor with a channel comprising a thin nanocrystalline silicon transport layer and a thicker hydrogenated amorphous silicon absorption layer. The semiconductor and dielectric layers were deposited by radio-frequency plasma enhanced chemical vapor deposition. The phototransistor with channel length of 24 microns and photosensitive area of 1.4 mm(2) shows an off-current of about 1 pA, and high photoconductive gain in the subthreshold region. Measurements of the quantum efficiency at different incident light intensities and biasing conditions, along with spectral-response characteristics, and threshold voltage stability characterization demonstrate the feasibility of the phototransistor for low light level detection.
Resumo:
This article reports on a-Si:H-based low-leakage blue-enhanced photodiodes for dual-screen x-ray imaging detectors. Doped nanocrystalline silicon was incorporated in both the n- and p-type regions to reduce absorption losses for light incoming from the top and bottom screens. The photodiode exhibits a dark current density of 900 pA/cm(2) and an external quantum efficiency up to 90% at a reverse bias of 5 V. In the case of illumination through the tailored p-layer, the quantum efficiency of 60% at a 400 nm wavelength is almost double that for the conventional a-Si:H n-i-p photodiode.
Resumo:
An optically addressed read-write sensor based on two stacked p-i-n heterojunctions is analyzed. The device is a two terminal image sensing structure. The charge packets are injected optically into the p-i-n writer and confined at the illuminated regions changing locally the electrical field profile across the p-i-n reader. An optical scanner is used for charge readout. The design allows a continuous readout without the need for pixel-level patterning. The role of light pattern and scanner wavelengths on the readout parameters is analyzed. The optical-to-electrical transfer characteristics show high quantum efficiency, broad spectral response, and reciprocity between light and image signal. A numerical simulation supports the imaging process. A black and white image is acquired with a resolution around 20 mum showing the potentiality of these devices for imaging applications.
Resumo:
The characterization of physical properties of digital imaging systems requires the determination and measurement of detectors’ physical performance. Those measures such as modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) provide objective evaluations of digital detectors’ performance. To provide an MTF, NPS, and DQE calculation from raw-data images it is necessary to implement a method that is undertaken by two major steps: (1) image acquisition and (2) quantitative measure determination method. In this chapter a comprehensive description about a method to provide the measure of performance of digital radiography detectors is provided.
Resumo:
This paper presents a new driving scheme utilizing an in-pixel metal-insulator-semiconductor (MIS) photosensor for luminance control of active-matrix organic light-emitting diode (AMOLED) pixel. The proposed 3-TFT circuit is controlled by an external driver performing the signal readout, processing, and programming operations according to a luminance adjusting algorithm. To maintain the fabrication simplicity, the embedded MIS photosensor shares the same layer stack with pixel TFTs. Performance characteristics of the MIS structure with a nc-Si : H/a-Si : H bilayer absorber were measured and analyzed to prove the concept. The observed transient dark current is associated with charge trapping at the insulator-semiconductor interface that can be largely eliminated by adjusting the bias voltage during the refresh cycle. Other factors limiting the dynamic range and external quantum efficiency are also determined and verified using a small-signal model of the device. Experimental results demonstrate the feasibility of the MIS photosensor for the discussed driving scheme.
Resumo:
The Wyner-Ziv video coding (WZVC) rate distortion performance is highly dependent on the quality of the side information, an estimation of the original frame, created at the decoder. This paper, characterizes the WZVC efficiency when motion compensated frame interpolation (MCFI) techniques are used to generate the side information, a difficult problem in WZVC especially because the decoder only has available some reference decoded frames. The proposed WZVC compression efficiency rate model relates the power spectral of the estimation error to the accuracy of the MCFI motion field. Then, some interesting conclusions may be derived related to the impact of the motion field smoothness and the correlation to the true motion trajectories on the compression performance.
Resumo:
We have studied, in particular under normality of the implied random variables, the connections between different measures of risk such as the standard deviation, the W-ruin probability and the p-V@R. We discuss conditions granting the equivalence of these measures with respect to risk preference relations and the equivalence of dominance and efficiency of risk-reward criteria involving these measures. Then more specifically we applied these concepts to rigorously face the problem of finding the efficient set of de Finetti’s variable quota share proportional reinsurance.
Resumo:
Based on our recent discovery of closed form formulae of efficient Mean Variance retentions in variable quota-share proportional reinsurance under group correlation, we analyzed the influence of different combination of correlation and safety loading levels on the efficient frontier, both in a single period stylized problem and in a multiperiod one.
Resumo:
Since industrialization and the formation of larger urban centers in the nineteenth century, pollution of the environment was always present in daily life in various ways, namely in the form of light. Light pollution can cause various consequences, both for humans and for their ecosystem, producing effects on environmental, social, economic and scientific level. In Portugal, the lighting is responsible for 3% of total electricity consumption, energy costs are in some cases more than 50% towards the costs incurred by municipalities with energy, checking-in recent years a trend similar to that improvement of illumination levels in the region (about 4 to 5% per year). Proper use of lighting brings many benefits both to the citizen and environment, since greater energy efficiency can contribute to reducing CO2 emissions, energy costs, as well as to decrease the use of resources not-renewable and/or contamination of renewable resources, which can occurs in the process of obtaining electricity. The present study has a main goal to analyze the illuminance levels associated to the public lighting of the village of Vialonga, Vila Franca de Xira (Portugal), to verify if it is efficient. The aim is also to relate the efficiency of street lighting with the existence of light pollution.
Resumo:
Urinary tract infection (UTI) is one of the most prevalent pathologies in developed countries, particularly in women, characterized by the presence of bacterial growth in any part of the urinary system. Currently, urine culture is considered the gold standard method for the diagnosis of UTI. However, this method has several disadvantages including the time necessary for obtaining the results and the associated high costs. Therefore, it is important to evaluate new efficient and valuable methods for the diagnosis of these infections. Objectives: Presently, dipsticks are considered a possible valuable alternative to urine culture. This method has very low costs associated and the results can be obtained in few minutes. Here we aim to compare the sensibility, specificity, predictive value of a positive test and a negative test of both methods in order to determine the efficiency of the test strips method and also to characterize the microorganism more frequently isolated.
Resumo:
Reporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism. Semi-adherent HEK and adherent AGS cell lines, transfected with the plasmid pVAX-GFP using Lipofectamine, were used as model systems. Good partial least squares (PLS) models were built to estimate the transfection efficiency, either considering each cell line independently (R 2 ≥ 0.92; RMSECV ≤ 2 %) or simultaneously considering both cell lines (R 2 = 0.90; RMSECV = 2 %). Additionally, the effect of the transfection process on the HEK cell biochemical and metabolic features could be evaluated directly from the FT-IR spectra. Due to the high sensitivity of the technique, it was also possible to discriminate the effect of the transfection process from the transfection reagent on KEK cells, e.g., by the analysis of spectral biomarkers and biochemical and metabolic features. The present results are far beyond what any reporter gene assay or other specific probe can offer for these purposes.