15 resultados para quantum computing, molecular electronics, lab-on-a-chip
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Esta tese tem por objectivo o desenho e avaliação de um sistema de contagem e classificação de veículos automóveis em tempo-real e sem fios. Pretende, também, ser uma alternativa aos actuais equipamentos, muito intrusivos nas vias rodoviárias. Esta tese inclui um estudo sobre as comunicações sem fios adequadas a uma rede de equipamentos sensores rodoviários, um estudo sobre a utilização do campo magnético como meio físico de detecção e contagem de veículos e um estudo sobre a autonomia energética dos equipamentos inseridos na via, com recurso, entre outros, à energia solar. O projecto realizado no âmbito desta tese incorpora, entre outros, a digitalização em tempo real da assinatura magnética deixada pela passagem de um veículo, no campo magnético da Terra, o respectivo envio para servidor via rádio e WAN, Wide Area Network, e o desenvolvimento de software tendo por base a pilha de protocolos ZigBee. Foram desenvolvidas aplicações para o equipamento sensor, para o coordenador, para o painel de controlo e para a biblioteca de Interface de um futuro servidor aplicacional. O software desenvolvido para o equipamento sensor incorpora ciclos de detecção e digitalização, com pausas de adormecimento de baixo consumo, e a activação das comunicações rádio durante a fase de envio, assegurando assim uma estratégia de poupança energética. Os resultados obtidos confirmam a viabilidade desta tecnologia para a detecção e contagem de veículos, assim como para a captura de assinatura usando magnetoresistências. Permitiram ainda verificar o alcance das comunicações sem fios com equipamento sensor embebido no asfalto e confirmar o modelo de cálculo da superfície do painel solar bem como o modelo de consumo energético do equipamento sensor.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Single processor architectures are unable to provide the required performance of high performance embedded systems. Parallel processing based on general-purpose processors can achieve these performances with a considerable increase of required resources. However, in many cases, simplified optimized parallel cores can be used instead of general-purpose processors achieving better performance at lower resource utilization. In this paper, we propose a configurable many-core architecture to serve as a co-processor for high-performance embedded computing on Field-Programmable Gate Arrays. The architecture consists of an array of configurable simple cores with support for floating-point operations interconnected with a configurable interconnection network. For each core it is possible to configure the size of the internal memory, the supported operations and number of interfacing ports. The architecture was tested in a ZYNQ-7020 FPGA in the execution of several parallel algorithms. The results show that the proposed many-core architecture achieves better performance than that achieved with a parallel generalpurpose processor and that up to 32 floating-point cores can be implemented in a ZYNQ-7020 SoC FPGA.
Resumo:
This project was developed to fully assess the indoor air quality in archives and libraries from a fungal flora point of view. It uses classical methodologies such as traditional culture media – for the viable fungi – and modern molecular biology protocols, especially relevant to assess the non-viable fraction of the biological contaminants. Denaturing high-performance liquid chromatography (DHPLC) has emerged as an alternative to denaturing gradient gel electrophoresis (DGGE) and has already been applied to the study of a few bacterial communities. We propose the application of DHPLC to the study of fungal colonization on paper-based archive materials. This technology allows for the identification of each component of a mixture of fungi based on their genetic variation. In a highly complex mixture of microbial DNA this method can be used simply to study the population dynamics, and it also allows for sample fraction collection, which can, in many cases, be immediately sequenced, circumventing the need for cloning. Some examples of the methodological application are shown. Also applied is fragment length analysis for the study of mixed Candida samples. Both of these methods can later be applied in various fields, such as clinical and sand sample analysis. So far, the environmental analyses have been extremely useful to determine potentially pathogenic/toxinogenic fungi such as Stachybotrys sp., Aspergillus niger, Aspergillus fumigatus, and Fusarium sp. This work will hopefully lead to more accurate evaluation of environmental conditions for both human health and the preservation of documents.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
Although the computational power of mobile devices has been increasing, it is still not enough for some classes of applications. In the present, these applications delegate the computing power burden on servers located on the Internet. This model assumes an always-on Internet connectivity and implies a non-negligible latency. The thesis addresses the challenges and contributions posed to the application of a mobile collaborative computing environment concept to wireless networks. The goal is to define a reference architecture for high performance mobile applications. Current work is focused on efficient data dissemination on a highly transitive environment, suitable to many mobile applications and also to the reputation and incentive system available on this mobile collaborative computing environment. For this we are improving our already published reputation/incentive algorithm with knowledge from the usage pattern from the eduroam wireless network in the Lisbon area.
Resumo:
This letter presents a new parallel method for hyperspectral unmixing composed by the efficient combination of two popular methods: vertex component analysis (VCA) and sparse unmixing by variable splitting and augmented Lagrangian (SUNSAL). First, VCA extracts the endmember signatures, and then, SUNSAL is used to estimate the abundance fractions. Both techniques are highly parallelizable, which significantly reduces the computing time. A design for the commodity graphics processing units of the two methods is presented and evaluated. Experimental results obtained for simulated and real hyperspectral data sets reveal speedups up to 100 times, which grants real-time response required by many remotely sensed hyperspectral applications.
Resumo:
Physical computing has spun a true global revolution in the way in which the digital interfaces with the real world. From bicycle jackets with turn signal lights to twitter-controlled christmas trees, the Do-it-Yourself (DiY) hardware movement has been driving endless innovations and stimulating an age of creative engineering. This ongoing (r)evolution has been led by popular electronics platforms such as the Arduino, the Lilypad, or the Raspberry Pi, however, these are not designed taking into account the specific requirements of biosignal acquisition. To date, the physiological computing community has been severely lacking a parallel to that found in the DiY electronics realm, especially in what concerns suitable hardware frameworks. In this paper, we build on previous work developed within our group, focusing on an all-in-one, low-cost, and modular biosignal acquisition hardware platform, that makes it quicker and easier to build biomedical devices. We describe the main design considerations, experimental evaluation and circuit characterization results, together with the results from a usability study performed with volunteers from multiple target user groups, namely health sciences and electrical, biomedical, and computer engineering. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
The emergence of smartphones with Wireless LAN (WiFi) network interfaces brought new challenges to application developers. The expected increase of users connectivity will impact their expectations for example on the performance of background applications. Unfortunately, the number and breadth of the studies on the new patterns of user mobility and connectivity that result from the emergence of smartphones is still insufficient to support this claim. This paper contributes with preliminary results on a large scale study of the usage pattern of about 49000 devices and 31000 users who accessed at least one access point of the eduroam WiFi network on the campuses of the Lisbon Polytechnic Institute. Results confirm that the increasing number of smartphones resulted in significant changes to the pattern of use, with impact on the amount of traffic and users connection time.
Resumo:
Floating-point computing with more than one TFLOP of peak performance is already a reality in recent Field-Programmable Gate Arrays (FPGA). General-Purpose Graphics Processing Units (GPGPU) and recent many-core CPUs have also taken advantage of the recent technological innovations in integrated circuit (IC) design and had also dramatically improved their peak performances. In this paper, we compare the trends of these computing architectures for high-performance computing and survey these platforms in the execution of algorithms belonging to different scientific application domains. Trends in peak performance, power consumption and sustained performances, for particular applications, show that FPGAs are increasing the gap to GPUs and many-core CPUs moving them away from high-performance computing with intensive floating-point calculations. FPGAs become competitive for custom floating-point or fixed-point representations, for smaller input sizes of certain algorithms, for combinational logic problems and parallel map-reduce problems. © 2014 Technical University of Munich (TUM).
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
Helicobacter pylori infection represents a serious health problem, given its association with serious gastric diseases as gastric ulcers, cancer and MALT lymphoma. Currently no vaccine exists and antibiotic-based eradication therapy is already failing in more than 20% of cases. To increase the knowledge on the infection process diverse gastric cell lines, e.g. the adenocarcinona gastric (AGS) cell line, are routinely used has in vitro models of gastric epithelia. In the present work the molecular fingerprint of infected and non-infected AGS cell lines, by diverse H. pylori strains, was acquired using vibrational infrared spectroscopy. These molecular fingerprints enabled to discriminate infected from non-infected AGS cells, and infection due to different strains, by performing Principal Component Analysis. It was also possible to estimate, from the AGS cells molecular fingerprint, the effect of the infection on diverse biochemical and metabolic cellular status. In resume infra-red spectroscopy enabled the acquisition of infected AGS cells molecular fingerprint with minimal sample preparation, in a rapid, high-throughput, economic process yielding highly sensitive and informative data, most useful for promoting critical knowledge on the H. pylori infection process. © 2015 IEEE.
Resumo:
The application of compressive sensing (CS) to hyperspectral images is an active area of research over the past few years, both in terms of the hardware and the signal processing algorithms. However, CS algorithms can be computationally very expensive due to the extremely large volumes of data collected by imaging spectrometers, a fact that compromises their use in applications under real-time constraints. This paper proposes four efficient implementations of hyperspectral coded aperture (HYCA) for CS, two of them termed P-HYCA and P-HYCA-FAST and two additional implementations for its constrained version (CHYCA), termed P-CHYCA and P-CHYCA-FAST on commodity graphics processing units (GPUs). HYCA algorithm exploits the high correlation existing among the spectral bands of the hyperspectral data sets and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. The proposed P-HYCA and P-CHYCA implementations have been developed using the compute unified device architecture (CUDA) and the cuFFT library. Moreover, this library has been replaced by a fast iterative method in the P-HYCA-FAST and P-CHYCA-FAST implementations that leads to very significant speedup factors in order to achieve real-time requirements. The proposed algorithms are evaluated not only in terms of reconstruction error for different compressions ratios but also in terms of computational performance using two different GPU architectures by NVIDIA: 1) GeForce GTX 590; and 2) GeForce GTX TITAN. Experiments are conducted using both simulated and real data revealing considerable acceleration factors and obtaining good results in the task of compressing remotely sensed hyperspectral data sets.
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.