20 resultados para organic solvents

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the printing industry, volatile organic compounds main sources are the uses of organic solvents, fountain solutions and cleaning agents. Nowadays, one circumstance which might confuse the exposure reality is that the majority of solvents which are often used have a faint odour. Therefore, the conditions at offset printing in regard to solvent exposure may seem acceptable to workers. Fortunately, general ventilation and local exhaust systems have also become more common, and new printing machines, often with automatic cleaning, have entered the market. The health effects of volatile organic solvents are dependent on the chemicals involved but, normally, are associated with affecting the nervous system, the liver and also the kidneys. The purpose of this study was to document the conditions regarding exposure to volatile organic compounds in an offset printing unit and to permit identify task with higher exposure and with priority for preventive measures application. Exposure assessment was done before and after installation of general ventilation and local exhaust equipments and during printing and cleaning procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Segurança e Higiene do Trabalho.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behavior of copper(II) complexes of pentane-2,4-dione and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, [Cu(acac)(2) (1) and [Cu(HFacac)(2)(H2O)] (2), in ionic liquids and molecular organic solvents, was studied by spectroscopic and electrochemical techniques. The electron paramagnetic resonance characterization (EPR) showed well-resolved spectra in most solvents. In general the EPR spectra of [Cu(acac)(2)] show higher g(z) values and lower hyperfine coupling constants, A(z), in ionic liquids than in organic solvents, in agreement with longer Cu-O bond lengths and higher electron charge in the copper ion in the ionic liquids, suggesting coordination of the ionic liquid anions. For [Cu(HFacac)(2)(H2O)] the opposite was observed suggesting that in ionic liquids there is no coordination of the anions and that the complex is tetrahedrically distorted. The redox properties of the Cu(II) complexes were investigated by cyclic voltammetry (CV) at a Pt electrode (d = 1 mm), in bmimBF(4) and bmimNTf(2) ionic liquids and, for comparative purposes, in neat organic solvents. The neutral copper(II) complexes undergo irreversible reductions to Cu(I) and Cu(0) species in both ILs and common organic solvents (CH2Cl2 or acetonitrile), but, in ILs, they are usually more easier to reduce (less cathodic reduction potential) than in the organic solvents. Moreover, 1 and 2 are easier to reduce in bmimNTf(2) than in bmimBF(4) ionic liquid. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New highly fluorescent calix[4]arene-containing phenylene-alt-ethynylene-3,6- and 2,7-carbazolylene polymers (CALIX-PPE-CBZs) have been synthesized for the first time and their photophysical properties evaluated. Both polymers were obtained in good isolated yields (70-84%), having M-w ranging from 7660-26,700 g mol(-1). It was found that the diethynyl substitution (3,6- or 2,7-) pattern on the carbazole monomers markedly influences the degree of polymerization. The amorphous yellow polymers are freely soluble in several nonprotic organic solvents and have excellent film forming abilities. TG/DSC analysis evidences similar thermal behaviors for both polymers despite their quite different molecular weight distributions and main-chain connectivities (T-g, in the range 83-95 degrees C and decomposition onsets around 270 degrees C). The different conjugation lengths attained by the two polymers dictates much of their photophysical properties. Thus, whereas the fully conjugated CALIX-PPE-2,7-CBZ has its emission maximum at 430 nm (E-g = 2.84 eV; Phi(F) = 0.62, CHCl3), the 3,6-linked counterpart (CALIX-PPE-3,6-CBZ) fluoresces at 403 nm with a significant lower quantum yield (E-g = 3.06 eV; Phi(F) = 0.31, CHCl3). The optical properties of both polymers are predominantly governed by the intrachain electronic properties of the conjugated backbones owing to the presence of calix[4]arenes along the polymer chain which disfavor significant interchain interactions, either in fluid- or solid-state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The market for emulsion polymers (latexes) is large and growing at the expense of other manufacturing processes that emit higher amounts of volatile organic solvents. The paint industry is not an exception and solvent-borne paints have been gradually substituted by aqueous paints. In their life-cycle, much of the aqueous paint used for architectural or decorative purposes will eventually be discharged into wastewater treatment facilities, where its polymeric nanoparticles (mainly acrylic and styrene-acrylic) can work as xenobiotics to the microbial communities present in activated sludge. It is well established that these materials are biocompatible at macroscopic scale. But is their behaviour the same at nanoscale? What happens to the polymeric nanoparticles during the activated sludge process? Do nanoparticles agregate and are discharged together with the sludge or remain in emulsion? How do microorganisms interact with these nanoparticles? Are nanoparticles degradated by them? Are they adsorbed? Are these nanoparticles toxic to the microbial community? To study the influence of these xenobiotics in the activated sludge process, an emulsion of cross-linked poly(butyl methacrylate) nanoparticles of ca. 50 nm diameter was produced and used as model compound. Activated sludge from a wastewater treatment plant was tested by the OCDE’s respiration inhibition test using several concentrations of PBMA nanoparticles. Particle aggregation was followed by Dynamic Light Scattering and microorganism surfaces were observed by Atomic Force Microscopy. Using sequential batch reactors (SBRs) and continuous reactors, both inoculated with activated sludge, the consumption of carbon, ammonia, nitrite and nitrate was monitored and compared, in the presence and absence of nanoparticles. No particles were detected in all treated waters by Dynamic Light Scattering. This can either mean that microorganisms can efficiently remove all polymer nanoparticles or that nanoparticles tend to aggregate and be naturally removed by precipitation. Nevertheless respiration inhibition tests demonstrated that microorganisms consume more oxygen in the presence of nanoparticles, which suggests a stress situation. It was also observed a slight decrease in the efficiency of nitrification in the presence of nanoparticles. AFM images showed that while the morphology of some organisms remained the same both in the presence and absence of nanoparticles, others assumed a rough surface with hilly like shapes of ca. 50 nm when exposed to nanoparticles. Nanoparticles are thus likely to be either incorporated or adsorbed at the surface of some organisms, increasing the overall respiration rate and decreasing nitrification efficiency. Thus, despite its biocompatibility at macroscopic scale, PBMA is likely to be no longer innocuous at nanoscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives ((t)Butyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin-(t)Butyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin-(t)Butyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 x 10(-2) U mg protein(-1) at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (V'(max), K'(m), k'(cat) and k'(cat)/K'(m)) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis-Menten plot. Furthermore, the stability of the protein-calixarene complex was investigated for different initial pH values and half-life (t(1/2)) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin-calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction - In poultry houses, large-scale production has led to increased bird densities within buildings. Such high densities of animals kept within confined spaces are a source of human health problems related to occupational organic dust exposure. This organic dust is composed of both non-viable particles and viable particulate matter (also called bioaerosols). Bioaerosols are comprised by airborne bacteria, fungi, viruses and their by-products, endotoxins and mycotoxins. Exposure to fungi in broiler houses may vary depending upon the applied ventilation system. Ventilation can be an important resource in order to reduce air contamination in these type of settings. Nevertheless, some concerns regarding costs, sensitivity of the animal species to temperature differences, and also the type of building used define which type of ventilation is used. Aim of the study - A descriptive study was developed in one poultry unit aiming to assess occupational fungal and volatile organic compounds (VOCs) exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enthalpies of solution of 1-butyl-3-methylimidazolium tetra fluoroborate, [BMIm]BF4, are reported at 298.15 K in a set of 15 hydrogen bond donor and hydrogen bond acceptor solvents, chosen by their diversity, namely, water, methanol, ethanol, 1,2-ethanediol, 2-choroethanol, 2-methoxyethanol, formamide, propylene carbonate, nitromethane, acetonitrile, dimethyl sulfoxide, acetone, N,N-dimethylformamide, N,N-dimethylacetamide, and aniline. These values are shown to be largely independent of [BMIm]BF4 concentration. The obtained enthalpies of solution vary from very endothermic to quite exothermic, thus showing a very high sensitivity of the enthalpies of solution of [BMIm]BF4 to solvent properties. Solvent effects on the solution process of this IL are analyzed by a quantitative structure-property relationship methodology, using the TAKA equation and a modified equation, which significantly improves the model's predictive ability. The observed differences in the enthalpies of solution are rationalized in terms of the solvent properties found to be relevant, that is, pi* and E-T(N).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Higiene e Segurança no Trabalho

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the management of solid waste, pollutants over a wide range are released with different routes of exposure for workers. The potential for synergism among the pollutants raises concerns about potential adverse health effects, and there are still many uncertainties involved in exposure assessment. In this study, conventional (culture-based) and molecular real-time polymerase chain reaction (RTPCR) methodologies were used to assess fungal air contamination in a waste-sorting plant which focused on the presence of three potential pathogenic/toxigenic fungal species: Aspergillus flavus, A. fumigatus, and Stachybotrys chartarum. In addition, microbial volatile organic compounds (MVOC) were measured by photoionization detection. For all analysis, samplings were performed at five different workstations inside the facilities and also outdoors as a reference. Penicillium sp. were the most common species found at all plant locations. Pathogenic/toxigenic species (A. fumigatus and S. chartarum) were detected at two different workstations by RTPCR but not by culture-based techniques. MVOC concentration indoors ranged between 0 and 8.9 ppm (average 5.3 ± 3.16 ppm). Our results illustrated the advantage of combining both conventional and molecular methodologies in fungal exposure assessment. Together with MVOC analyses in indoor air, data obtained allow for a more precise evaluation of potential health risks associated with bioaerosol exposure. Consequently, with this knowledge, strategies may be developed for effective protection of the workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of MVOC by fungi has been taken into account especially from the viewpoint of indoor pollution with microorganisms but the relevance of fungal metabolites in working environments has not been sufficiently studied. The purpose of this study was to assess exposure to MVOCs in a waste-handling unit. It was used Multirae equipment (RAE Systems) to measured MVOCs concentration with a 10.6 eV lamps. The measurements were done near workers nose and during the normal activities. All measurements were done continuously and had the duration of 5 minutes at least. It was consider the higher value obtained in each measurement. In addition, for knowing fungi contamination, five air samples of 50 litres were collected through impaction method at 140 L/minute, at one meter tall, on to malt extract agar with the antibiotic chloramphenicol (MEA). MVOCs results range between 4.7 ppm and 8.9 ppm in the 6 locations consider. These results are eight times higher than normally obtained in indoor settings. Considering fungi results, two species were identified in air, being the genera Penicillium found in all the samples in uncountable colonies and Rhizopus only in one sample (40 UFC/m3). These fungi are known as MVOCs producers, namely terpenoids, ketones, alcohols and others. Until now, there has been no evidence that MVOCs are toxicologically relevant, but further epidemiological research is necessary to elucidate their role on human’s health, particularly in occupational settings where microbiological contamination is common. Additionally, further research should concentrate on quantitative analyses of specific MVOCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores a large set of OC and EC measurements in PM(10) and PM(2.5) aerosol samples, undertaken with a long term constant analytical methodology, to evaluate the capability of the OC/EC minimum ratio to represent the ratio between the OC and EC aerosol components resulting from fossil fuel combustion (OC(ff)/EC(ff)). The data set covers a wide geographical area in Europe, but with a particular focus upon Portugal, Spain and the United Kingdom, and includes a great variety of sites: urban (background, kerbside and tunnel), industrial, rural and remote. The highest minimum ratios were found in samples from remote and rural sites. Urban background sites have shown spatially and temporally consistent minimum ratios, of around 1.0 for PM(10) and 0.7 for PM(2.5).The consistency of results has suggested that the method could be used as a tool to derive the ratio between OC and EC from fossil fuel combustion and consequently to differentiate OC from primary and secondary sources. To explore this capability, OC and EC measurements were performed in a busy roadway tunnel in central Lisbon. The OC/EC ratio, which reflected the composition of vehicle combustion emissions, was in the range of 03-0.4. Ratios of OC/EC in roadside increment air (roadside minus urban background) in Birmingham, UK also lie within the range 03-0.4. Additional measurements were performed under heavy traffic conditions at two double kerbside sites located in the centre of Lisbon and Madrid. The OC/EC minimum ratios observed at both sites were found to be between those of the tunnel and those of urban background air, suggesting that minimum values commonly obtained for this parameter in open urban atmospheres over-predict the direct emissions of OC(ff) from road transport. Possible reasons for this discrepancy are explored. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural workers especially poultry farmers are at increased risk of occupational respiratory diseases. Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers. In poultry production volatile organic compounds (VOCs) presence can be due to some compounds produced by molds that are volatile and are released directly into the air. These are known as microbial volatile organic compounds (MVOCs). Because these compounds often have strong and/or unpleasant odors, they can be the source of odors associated with molds. MVOC's are products of the microorganisms primary and secondary metabolism and are composed of low molecular weight alcohols, aldehydes, amines, ketones, terpenes, aromatic and chlorinated hydrocarbons, and sulfur-based compounds, all of which are variations of carbon-based molecules.