9 resultados para least absolute deviation (LAD) fitting

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solubilities of three primary amides, namely, acetanilide, propanamide, and butanamide, in supercritical carbon dioxide were measured at T = (308.2, 313.2, and 323.2) K over the pressure range (9.0 to 40.0) MPa by a flow type apparatus. The solubility behavior of the three solids shows an analogous trend with a crossover region of the respective isotherms between (12 to 14) MPa. The solubility of each amide, at the same temperature and pressure, decreases from propanamide to acetanilide. Pure compound properties required for the modeling were estimated, and the solubilities of the amides were correlated by using the Soave-Redlich-Kwong cubic equation of state with an absolute average relative deviation (AARD) from (1.3 to 6.1) %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A calibração e o controlo da qualidade de um acelerador linear são passos muito importantes num serviço de Radioterapia, para garantir a qualidade dos tratamentos prestados. O sector da Física da Unidade de Radioterapia do Hospital Cuf Descobertas implementou um rigoroso Programa de controlo de qualidade ao equipamento produtor de radiação e aos equipamentos medidores de radiação, de acordo com o Dec-Lei 180/2002 e com os protocolos internacionais. Para tal, foram implementados procedimentos, criadas folhas de cálculo, instruções de trabalho e impressos. Foram ainda implementados testes aos equipamentos com periodicidade definida: controlo de qualidade diário e controlo de qualidade após intervenções (manutenções preventivas e correctivas). No decorrer do ano de 2005, o sector da Física colaborou activamente com toda a equipa da Radioterapia na implementação da Norma ISO 9001:2000 no serviço, contribuindo com o seu know how na implementação desta, numa área tão importante como a da garantia da qualidade dos feixes de radiação e das respectivas calibrações em dose. Numa procura de melhoria contínua da qualidade dos serviços prestados aos pacientes, decorre ainda uma auditoria externa da EQUAL-ESTRO*, intercomparação postal com dosímetros termoluminescentes. A qualidade dos feixes de energias utilizados diariamente é analisada, tanto ao nível das calibrações absolutas de cada um dos feixes de fotões e de electrões, como ao nível dos cálculos de dose obtidos com o sistema de planimetria XiO da CMS. Os resultados das duas primeiras fases da intercomparação, relativa aos dois feixes de fotões de 6 MV e 15 MV e feixes de electrões de 4 MeV, 8 MeV e 12 MeV, foram considerados pela EQUAL-ESTRO num nível óptimo (desvio máximo na dose medida em relação à dose de referência |d| ≤ 3%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new inherently chiral calix[4]arene ICC 1 has been disclosed. The dissymmetry of 1 is generated from a chirality plane in the quinol moiety of a 1,3-bridged bicyclic calix[4]arene. ICC 1 has been resolved by enantioselective HPLC, and the chiroptical properties of both isolated antipodes (pS)-1 and (pR)-1 confirm their enantiomeric nature. The absolute configuration of the (pS)-1/(pR)-1 enantiomeric pair was established through time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (CD) spectra. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work provides an assessment of layerwise mixed models using least-squares formulation for the coupled electromechanical static analysis of multilayered plates. In agreement with three-dimensional (3D) exact solutions, due to compatibility and equilibrium conditions at the layers interfaces, certain mechanical and electrical variables must fulfill interlaminar C-0 continuity, namely: displacements, in-plane strains, transverse stresses, electric potential, in-plane electric field components and transverse electric displacement (if no potential is imposed between layers). Hence, two layerwise mixed least-squares models are here investigated, with two different sets of chosen independent variables: Model A, developed earlier, fulfills a priori the interiaminar C-0 continuity of all those aforementioned variables, taken as independent variables; Model B, here newly developed, rather reduces the number of independent variables, but also fulfills a priori the interlaminar C-0 continuity of displacements, transverse stresses, electric potential and transverse electric displacement, taken as independent variables. The predictive capabilities of both models are assessed by comparison with 3D exact solutions, considering multilayered piezoelectric composite plates of different aspect ratios, under an applied transverse load or surface potential. It is shown that both models are able to predict an accurate quasi-3D description of the static electromechanical analysis of multilayered plates for all aspect ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports viscosity measurements of compressed liquid dipropyl (DPA) and dibutyl (DBA) adipates obtained with two vibrating wire sensors developed in our group. The vibrating wire instruments were operated in the forced oscillation, or steady-state mode. The viscosity measurements of DPA were carried out in a range of pressures up to 18. MPa and temperatures from (303 to 333). K, and DBA up to 65. MPa and temperature from (303 to 373). K, covering a total range of viscosities from (1.3 to 8.3). mPa. s. The required density data of the liquid samples were obtained in our laboratory using an Anton Paar vibrating tube densimeter and were reported in a previous paper. The viscosity results were correlated with density, using a modified hard-spheres scheme. The root mean square deviation of the data from the correlation is less than (0.21 and 0.32)% and the maximum absolute relative deviations are within (0.43 and 0.81)%, for DPA and DBA respectively. No data for the viscosity of both adipates could be found in the literature. Independent viscosity measurements were also performed, at atmospheric pressure, using an Ubbelohde capillary in order to compare with the vibrating wire results. The expanded uncertainty of these results is estimated as ±1.5% at a 95% confidence level. The two data sets agree within the uncertainty of both methods. © 2015 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.