5 resultados para enzyme-linked immunosorbent assay
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A hidatidose, vulgarmente conhecida por quisto hidático, é causada pelos estados larvares do parasita Echinococcus granulosus. O seu diagnóstico baseia-se na clínica, na epidemiologia e nas técnicas imagiológicas, sendo suportado por testes serológicos. O tratamento mais comum é o cirúrgico, sendo importante o diagnóstico definitivo da doença antes da cirurgia, para se prevenir a disseminação dos quistos que pode ocorrer durante a mesma. Neste trabalho comparam-se dois métodos imunoserológicos para o diagnóstico da hidatidose: Enzyme-linked Immunosorbent Assay (ELISA) para pesquisa de Imunoglobulina G; e Fluoro-enzyme Immunoassay (FEIA) para pesquisa de Imunoglobulina E. Dos 55 indivíduos incluídos no estudo, todos em fase pré-operatória, 31% possuíam quisto hidático calcificado, 54,5% quisto hidático não calcificado e 14,5% não possuíam hidatidose, mas quistos simples. Os testes apresentaram a mesma especificidade (87,5%), sendo a sensibilidade do ELISA IgG mais baixa (63,8%) do que a do FEIA IgE (76,6%). Foi demonstrada uma boa correlação entre os dois métodos (r = 0,726, p < 0,05).
Resumo:
Aflatoxin B1 (AFB1) has been recognized to produce cancer in human liver. In addition, epidemiological and laboratory studies demonstrated that the respiratory system was a target for AFB1. Exposure occurs predominantly through the food chain, but inhalation represents an additional route of exposure. The present study aimed to examine AFB1 exposure among poultry workers in Portugal. Blood samples were collected from a total of 31 poultry workers from six poultry farms. In addition, a control group (n = 30) was included comprised of workers who undertook administrative tasks. Measurement of AFB1 in serum was performed by enzyme-linked immunosorbent assay (ELISA). For examining fungi contamination, air samples were collected through an impaction method. Air sampling was obtained in pavilion interior and outside the premises, since this was the place regarded as the reference location. Using molecular methods, toxicogenic strains (aflatoxin-producing) were investigated within the group of species belonging to Aspergillus flavus complex. Eighteen poultry workers (59%) had detectable levels of AFB1 with values ranging from <1 ng/ml to4.23 ng/ml and with a mean value of 2 ± 0.98ng/ml. AFB1 was not detected in the serum sampled from any of the controls. Aspergillus flavus was the fungal species third most frequently found in the indoor air samples analyzed (7.2%) and was the most frequently isolated species in air samples containing only Aspergillus genus (74.5%). The presence of aflatoxigenic strains was only confirmed in outdoor air samples from one of the units, indicating the presence of a source inside the building in at least one case. Data indicate that AFB1 inhalation represents an additional risk in this occupational setting that needs to be recognized, assessed, and prevented.
Resumo:
Purpose: This study was conducted to study the influence of protein structure on the immunogenicity in wild-type and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods: RhIFNα2b was degraded by metal-catalyzed oxidation (M), cross-linking with glutaraldehyde (G), oxidation with hydrogen peroxide (H), and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reverse-phase high-pressure liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. The immunogenicity of the products was evaluated in wild-type mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by enzyme-linked immunosorbent assay or surface plasmon resonance. Results: M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Nontreated (N) rhIFNα2b was immunogenic in the wild-type mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The anti-rhIFNα2b antibody levels in the wild-type mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ∼ N-rhIFNα2b ≫ B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions: RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
Aflatoxin B1 (AFB1) is considered by different International Agencies as a genotoxic and potent hepatocarcinogen. However, despite the fact that the fungi producing this compound are detected in some work environments, AFB1 is rarely monitored in occupational settings. The aim of the present investigation was to assess exposure to AFB1 of workers from one Portuguese waste company located in the outskirt of Lisbon. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Forty-one workers from the waste company were enrolled in this study (26 from sorting; 9 from composting; 6 from incineration). A control group (n = 30) was also considered in order to know the AFB1 background levels for the Portuguese population. All the workers showed detectable levels of AFB1 with values ranging from 2.5ng ml−1 to 25.9ng ml−1 with a median value of 9.9±5.4ng ml−1. All of the controls showed values below the method’s detection limit. Results obtained showed much higher (8-fold higher) values when compared with other Portuguese settings already studied, such as poultry and swine production. Besides this mycotoxin, other mycotoxins are probably present in this occupational setting and this aspect should be taken into consideration for the risk assessment process due to possible synergistic reactions. The data obtained suggests that exposure to AFB1 occurs in a waste management setting and claims attention for the need of appliance of preventive and protective safety measures.
Resumo:
Aflatoxin B1 (AFB1) is a secondary metabolite produced by the fungi Aspergillus flavus and is the most potent hepatocarcinogen known in mammals and has been classified by the International Agency of Research on Cancer as Group 1 carcinogen. Although dietary exposure to AFB1 has been extensively documented, there are still few studies dedicated to the problem of occupational exposure. Considering recent findings regarding AFB1 occupational exposure in poultry production, it was considered relevant to clarify if there is also exposure in poultry slaughterhouses. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Thirty workers from a slaughterhouse were enrolled in this study. A control group (n = 30) was also considered in order to know AFB1 background levels for Portuguese population. Fourteen workers (47.0%) showed detectable levels of AFB1 with values from 1.06 to 4.03ng ml(-1), with a mean value of 1.73ng ml(-1). No AFB1 was detected in serum of individuals used as controls. Despite uncertainties regarding the exposure route that is contributing more to exposure (inhalation or dermal) is possible to state that exposure to AFB1 is occurring in the slaughterhouse studied. It seems that reducing AFB1 contamination in poultry production can have a positive result in this occupational setting.