19 resultados para diamond electrodes

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications involving biosignals, such as Electrocardiography (ECG), are becoming more pervasive with the extension towards non-intrusive scenarios helping targeting ambulatory healthcare monitoring, emotion assessment, among many others. In this study we introduce a new type of silver/silver chloride (Ag/AgCl) electrodes based on a paper substrate and produced using an inkjet printing technique. This type of electrodes can increase the potential applications of biosignal acquisition technologies for everyday life use, given that there are several advantages, such as cost reduction and easier recycling, resultant from the approach explored in our work. We performed a comparison study to assess the quality of this new electrode type, in which ECG data was collected with three types of Ag/AgCl electrodes: i) gelled; ii) dry iii) paper-based inkjet printed. We also compared the performance of each electrode when acquired using a professional-grade gold standard device, and a low cost platform. Experimental results showed that data acquired using our proposed inkjet printed electrode is highly correlated with data obtained through conventional electrodes. Moreover, the electrodes are robust to high-end and low-end data acquisition devices. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper iron (Cu-Fe) 3D porous foams for supercapacitor electrodes were electrodeposited in the cathodic regime, on stainless steel current collectors, using hydrogen bubbling dynamic template. The foams were prepared at different current densities and deposition times. The foams were submitted to thermal conditioning at temperatures of 150 and 250 degrees C. The morphology, composition and structure of the formed films were studied by SEM, EDS and XRD, respectively. The electrochemical behaviour was studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. The morphology of the 3D Cu-Fe foams is sensitive to the electrodeposition current and time. The increase of the current density produces a denser, larger and more ramified dendritic structure. Thermal conditioning at high temperature induces a coarser grain structure and the formation of copper oxides, which affect the electrochemical behaviour. The electrochemical response reveals the presence of various redox peaks assigned to the oxidation and reduction of Cu and Fe oxides and hydroxides in the foams. The specific capacitance of the 3D Cu Fe foams was significantly enhanced by thermal conditioning at 150 degrees C. The highest specific capacitance values attained 297 Fg(-1) which are much above the ones typically observed for single Cu or Fe Oxides and hydroxides. These values highlight a synergistic behaviour resulting from the combination of Cu and Fe in the form of nanostructured metallic foams. Moreover, the capacitance retention observed in an 8000 charge/discharge cycling test was above 66%, stating the good performance of these materials and its enhanced electrochemical response as supercapacitor negative electrodes. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemically-reduced graphene oxide (Er-GO) and cobalt oxides (CoOx) were co-electrodeposited by cyclic voltammetry, from an electrolyte containing graphene oxide and cobalt nitrate, directly onto a stainless steel substrate to produce composite electrodes presenting high charge storage capacity. The electrochemical response of the composite films was optimized by studying the parameters applied during the electrodeposition process, namely the number of cycles, scan rate and ratio between GO/Co(NO3)(2) concentrations in the electrolyte. It is shown that, if the appropriate conditions are selected, it is possible to produced binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. The optimized Er-GO/CoOx developed in this work exhibits a specific capacitance of 608 F g(-1) at a current density of 1 A g(-1) and increased reversibility when compared to single CoOx. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 degrees C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g(-1) at 1 A g(-1) and presenting long-term cycling stability. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O estudo insere-se no âmbito da educação matemática, mais especificamente na área da geometria. Com esta investigação pretende-se compreender qual o contributo do Ambiente de Geometria Dinâmica (AGD), GeoGebra, e do material manipulável (geoplano) na identificação das propriedades e relações entre quadriláteros: trapézio, paralelogramo, retângulo, losango e quadrado. De acordo com o objetivo do estudo formularam-se três questões: Qual o papel das representações na identificação das propriedades dos quadriláteros? Que influência tem a visualização na identificação das propriedades dos quadriláteros? Quais os contributos da utilização do AGD, GeoGebra, e do material manipulável (geoplano) na compreensão das propriedades e relações entre os quadriláteros? Atendendo à problemática em estudo, optou-se por uma metodologia de investigação predominantemente qualitativa, baseada em três estudos de caso. A recolha de dados empíricos foi realizada numa turma de 4.º ano do 1.º ciclo do ensino básico onde se implementou uma experiência de ensino, envolvendo todos os alunos e recorrendo ao geoplano e ao GeoGebra. Essa recolha incidiu na observação participante, em sala de aula, no registo de notas da investigadora, nos documentos produzidos pelos alunos e nos registos áudio e vídeo das discussões nos grupos e no coletivo da turma. Em termos de resultados, salienta-se que a utilização de representações evidenciou a compreensão que os alunos têm dos conceitos, facilitou a identificação das propriedades dos quadriláteros e a compreensão das relações entre eles. Os alunos identificaram as propriedades com base nas representações, no entanto focaram-se em casos particulares, de acordo com a imagem mental que têm da figura, especificamente o protótipo, indiciando a influência da visualização. Dos resultados sobressai também a dificuldade que os alunos sentiram em considerar uma figura como representante de uma classe e em distinguir atributos essenciais e não essenciais. Da análise dos dados ressalta também que tanto o geoplano como o GeoGebra foram uma mais-valia na concretização da experiência de ensino deste estudo. Os dois possuem vantagens e limitações e podem ser usados de maneira que um complemente o outro, podendo dessa forma contribuir, favoravelmente, para a aprendizagem da geometria. - ABSTRACT The study falls within the scope of mathematics education, specifically in the area of geometry. This research aims to understand the contribution of the Dynamic Geometry Environment (GeoGebra) and manipulative material (Geoboard) in the identification of properties and relations of quadrilaterals: trapezium, parallelogram, rectangle, diamond and square. According to the purpose of the study three questions were formulated: What is the role of the representations in the identification of the properties of quadrilaterals? What is the influence of visualization on the identification of the properties of quadrilaterals? What are the contributions on the use of Dynamic Geometry Environment (GeoGebra) and manipulative material (Geoboard) to understand the properties and relationships among quadrilaterals? Given the problem under study, it was chosen a predominantly qualitative research methodology based on three case studies. The empirical data collection was carried out on a fourth primary grade class, where it was implemented a teaching experience, involving all students and the use of Geoboard and GeoGebra. This collection was focused on participant observation in the classroom, in the record of the researcher’s notes, the documents produced by the students and the audio and video recordings of group discussions and collective class. In terms of results, it is noted that the use of representations showed the students understanding of the concepts and that it has facilitated the identification of the properties of quadrilaterals and understanding of the relationships between them. The students identified properties based on representations, however they focused in particular cases, according to the mental image that they have of the figure, specifically the prototype, indicating the influence of visualization. Results also highlights the difficulty that students felt in considering a figure as a representation of a group and distinguishing essential and nonessential attributes. Data analysis also highlights that both Geoboard and GeoGebra have been an asset in the delivery of teaching experience in this study. Both have advantages and limitations and they may be used to complement each other and contribute favorably to the learning of geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica Ramo de Processos Químicos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar cells on lightweight and flexible substrates have advantages over glass-or wafer-based photovoltaic devices in both terrestrial and space applications. Here, we report on development of amorphous silicon thin film photovoltaic modules fabricated at maximum deposition temperature of 150 degrees C on 100 mu m thick polyethylene-naphtalate plastic films. Each module of 10 cm x 10 cm area consists of 72 a-Si:H n-i-p rectangular structures with transparent conducting oxide top electrodes with Al fingers and metal back electrodes deposited through the shadow masks. Individual structures are connected in series forming eight rows with connection ports provided for external blocking diodes. The design optimization and device performance analysis are performed using a developed SPICE model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current Electrocardiographic (ECG) signal acquisition methods are generally highly intrusive, as they involve the use of pre-gelled electrodes and cabled sensors placed directly on the person, at the chest or limbs level. Moreover, systems that make use of alternative conductive materials to overcome this issue, only provide heart rate information and not the detailed signal itself. We present a comparison and evaluation of two types of dry electrodes as interface with the skin, targeting wearable and low intrusiveness applications, which enable ECG measurement without the need for any apparatus permanently fitted to the individual. In particular, our approach is targeted at ECG biometrics using signals collected at the hand or finger level. A custom differential circuit with virtual ground was also developed for enhanced usability. Our work builds upon the current stateof-the-art in sensoring devices and processing tools, and enables novel data acquisition settings through the use of dry electrodes. Experimental evaluation was performed for Ag/AgCl and Electrolycra materials, and results show that both materials exhibit adequate performance for the intended application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia de Eletrónica e Computadores