34 resultados para analytical parameters
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Mestrado em Radioterapia.
Resumo:
The main goals of the present work are the evaluation of the influence of several variables and test parameters on the melt flow index (MFI) of thermoplastics, and the determination of the uncertainty associated with the measurements. To evaluate the influence of test parameters on the measurement of MFI the design of experiments (DOE) approach has been used. The uncertainty has been calculated using a "bottom-up" approach given in the "Guide to the Expression of the Uncertainty of Measurement" (GUM). Since an analytical expression relating the output response (MFI) with input parameters does not exist, it has been necessary to build mathematical models by adjusting the experimental observations of the response variable in accordance with each input parameter. Subsequently, the determination of the uncertainty associated with the measurement of MFI has been performed by applying the law of propagation of uncertainty to the values of uncertainty of the input parameters. Finally, the activation energy (Ea) of the melt flow at around 200 degrees C and the respective uncertainty have also been determined.
Resumo:
In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.
Resumo:
Esta tese pretende contribuir para o estudo e análise dos factores relacionados com as técnicas de aquisição de imagens radiológicas digitais, a qualidade diagnóstica e a gestão da dose de radiação em sistema de radiologia digital. A metodologia encontra-se organizada em duas componentes. A componente observacional, baseada num desenho do estudo de natureza retrospectiva e transversal. Os dados recolhidos a partir de sistemas CR e DR permitiram a avaliação dos parâmetros técnicos de exposição utilizados em radiologia digital, a avaliação da dose absorvida e o índice de exposição no detector. No contexto desta classificação metodológica (retrospectiva e transversal), também foi possível desenvolver estudos da qualidade diagnóstica em sistemas digitais: estudos de observadores a partir de imagens arquivadas no sistema PACS. A componente experimental da tese baseou-se na realização de experiências em fantomas para avaliar a relação entre dose e qualidade de imagem. As experiências efectuadas permitiram caracterizar as propriedades físicas dos sistemas de radiologia digital, através da manipulação das variáveis relacionadas com os parâmetros de exposição e a avaliação da influência destas na dose e na qualidade da imagem. Utilizando um fantoma contraste de detalhe, fantomas antropomórficos e um fantoma de osso animal, foi possível objectivar medidas de quantificação da qualidade diagnóstica e medidas de detectabilidade de objectos. Da investigação efectuada, foi possível salientar algumas conclusões. As medidas quantitativas referentes à performance dos detectores são a base do processo de optimização, permitindo a medição e a determinação dos parâmetros físicos dos sistemas de radiologia digital. Os parâmetros de exposição utilizados na prática clínica mostram que a prática não está em conformidade com o referencial Europeu. Verifica-se a necessidade de avaliar, melhorar e implementar um padrão de referência para o processo de optimização, através de novos referenciais de boa prática ajustados aos sistemas digitais. Os parâmetros de exposição influenciam a dose no paciente, mas a percepção da qualidade de imagem digital não parece afectada com a variação da exposição. Os estudos que se realizaram envolvendo tanto imagens de fantomas como imagens de pacientes mostram que a sobreexposição é um risco potencial em radiologia digital. A avaliação da qualidade diagnóstica das imagens mostrou que com a variação da exposição não se observou degradação substancial da qualidade das imagens quando a redução de dose é efectuada. Propõe-se o estudo e a implementação de novos níveis de referência de diagnóstico ajustados aos sistemas de radiologia digital. Como contributo da tese, é proposto um modelo (STDI) para a optimização de sistemas de radiologia digital.
Evaluation of exposure parameters in plain radiography: a comparative study with european guidelines
Resumo:
Typical distribution of exposure parameters in plain radiography is unknown in Portugal. This study aims to identify exposure parameters that are being used in plain radiography in the Lisbon area and to compare the collected data with European references [Commission of European Communities (CEC) guidelines]. The results show that in four examinations (skull, chest, lumbar spine and pelvis), there is a strong tendency of using exposure times above the European recommendation. The X-ray tube potential values (in kV) are below the recommended values from CEC guidelines. This study shows that at a local level (Lisbon region), radiographic practice does not comply with CEC guidelines concerning exposure techniques. Further national/local studies are recommended with the objective to improve exposure optimisation and technical procedures in plain radiography. This study also suggests the need to establish national/local diagnostic reference levels and to proceed to effective measurements for exposure optimisation.
Resumo:
We have calculated the equilibrium shape of the axially symmetric Plateau border along which a spherical bubble contacts a flat wall, by analytically integrating Laplace's equation in the presence of gravity, in the limit of small Plateau border sizes. This method has the advantage that it provides closed-form expressions for the positions and orientations of the Plateau border surfaces. Results are in very good overall agreement with those obtained from a numerical solution procedure, and are consistent with experimental data. In particular we find that the effect of gravity on Plateau border shape is relatively small for typical bubble sizes, leading to a widening of the Plateau border for sessile bubbles and to a narrowing for pendant bubbles. The contact angle of the bubble is found to depend even more weakly on gravity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This work reports on the synthesis of CrO2 thin films by atmospheric pressure CVD using chromium trioxide (CrO3) and oxygen. Highly oriented (100) CrO2 films containing highly oriented (0001) Cr2O3 were grown onto Al2O3(0001) substrates. Films display a sharp magnetic transition at 375 K and a saturation magnetization of 1.92 mu(B)/f.u., close to the bulk value of 2 mu(B)/f.u. for the CrO2.
Resumo:
A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). Methods: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. Results: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. Conclusion: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.
Resumo:
Myocardial Perfusion Gated Single Photon Emission Tomography (Gated-SPET) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. But standard protocols of the Gated-SPECT studies require long acquisition times for each study. It is therefore important to reduce as much as possible the total duration of image acquisition. However, it is known that this reduction leads to decrease on counts statistics per projection and raises doubts about the validity of the functional parameters determined by Gated-SPECT. Considering that, it’s difficult to carry out this analysis in real patients. For ethical, logistical and economical matters, simulated studies could be required for this analysis. Objective: Evaluate the influence of the total number of counts acquired from myocardium, in the calculation of myocardial functional parameters (LVEF – left ventricular ejection fraction, EDV – end-diastolic volume, ESV – end-sistolic volume) using routine software procedures.
Resumo:
Mestrado em Radioterapia.
Resumo:
In the two Higgs doublet model, there is the possibility that the vacuum where the universe resides in is metastable. We present the tree-level bounds on the scalar potential parameters which have to be obeyed to prevent that situation. Analytical expressions for those bounds are shown for the most used potential, that with a softly broken Z(2) symmetry. The impact of those bounds on the model's phenomenology is discussed in detail, as well as the importance of the current LHC results in determining whether the vacuum we live in is or is not stable. We demonstrate how the vacuum stability bounds can be obtained for the most generic CP-conserving potential, and provide a simple method to implement them.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Mestrado em Radioterapia
Resumo:
In a heterogeneous cellular networks environment, users behaviour and network deployment configuration parameters have an impact on the overall Quality of Service. This paper proposes a new and simple model that, on the one hand, explores the users behaviour impact on the network by having mobility, multi-service usage and traffic generation profiles as inputs, and on the other, enables the network setup configuration evaluation impact on the Joint Radio Resource Management (JRRM), assessing some basic JRRM performance indicators, like Vertical Handover (VHO) probabilities, average bit rates, and number of active users, among others. VHO plays an important role in fulfilling seamless users sessions transfer when mobile terminals cross different Radio Access Technologies (RATs) boundaries. Results show that high bit rate RATs suffer and generate more influence from/on other RATs, by producing additional signalling traffic to a JRRM entity. Results also show that the VHOs probability can range from 5 up to 65%, depending on RATs cluster radius and users mobility profile.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica