9 resultados para Tumor cell lines
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A new family of "RuCp" (Cp=eta(5)-C5H5) derivatives with bidentate N,O and N,N'-heteroaromatic ligands revealed outstanding cytotoxic properties against several human cell lines namely, A2780, A2780CisR, HT29, MCF7, MDAMB231, and PD. IC50 values were much lower than those found for cisplatin. Crystal structure of compound 4 was determined by X-ray diffraction studies. Density functional theory (DFT) calculations performed for compound 1 showed electronic flow from the ruthenium center to the coordinated bidentate ligand, in agreement with the electrochemical studies and the existence of a metal-to-ligand charge-transfer (MLCT) band evidenced by spectroscopic data.
Resumo:
Mestrado em Medicina Nuclear. Área de especialização: Radiofarmácia.
Resumo:
The very high antiproliferative activity of [Co(Cl)(H2O)(phendione)(2)][BF4] (phendione is 1,10-phenanthroline-5,6-dione) against three human tumor cell lines (half-maximal inhibitory concentration below 1 mu M) and its slight selectivity for the colorectal tumor cell line compared with healthy human fibroblasts led us to explore the mechanisms of action underlying this promising antitumor potential. As previously shown by our group, this complex induces cell cycle arrest in S phase and subsequent cell death by apoptosis and it also reduces the expression of proteins typically upregulated in tumors. In the present work, we demonstrate that [Co(Cl)(phendione)(2)(H2O)][BF4] (1) does not reduce the viability of nontumorigenic breast epithelial cells by more than 85 % at 1 mu M, (2) promotes the upregulation of proapoptotic Bax and cell-cycle-related p21, and (3) induces release of lactate dehydrogenase, which is partially reversed by ursodeoxycholic acid. DNA interaction studies were performed to uncover the genotoxicity of the complex and demonstrate that even though it displays K (b) (+/- A standard error of the mean) of (3.48 +/- A 0.03) x 10(5) M-1 and is able to produce double-strand breaks in a concentration-dependent manner, it does not exert any clastogenic effect ex vivo, ruling out DNA as a major cellular target for the complex. Steady-state and time-resolved fluorescence spectroscopy studies are indicative of a strong and specific interaction of the complex with human serum albumin, involving one binding site, at a distance of approximately 1.5 nm for the Trp214 indole side chain with log K (b) similar to 4.7, thus suggesting that this complex can be efficiently transported by albumin in the blood plasma.
Resumo:
Objective: To evaluate the influence of Everolimus (RAD001) on chemically induced urothelial lesions in mice and its influence on in vitro human bladder cancer cell lines. Methods: ICR male mice were given N-butyl-N-(4-hydroxybutyl) nitrosamine in drinking water for a period of 12 weeks. Subsequently, RAD001 was administered via oral gavage, for 6 weeks. At the end of the experiment, all the animals were sacrificed and tumor development was determined by means of histopathologic evaluation; mammalian target of rapamycin (mTOR) expressivity was evaluated by immunohistochemistry. Three human bladder cancer cell lines (T24, HT1376, and 5637) were treated using a range of RAD001 concentrations. MTT assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and flow cytometry were used to assess cell proliferation, apoptosis index, and cell cycle analysis, respectively. Immunoblotting analysis of 3 cell line extracts using mTOR and Akt antibodies was performed in order to study the expression of Akt and mTOR proteins and their phosphorylated forms. Results: The incidence of urothelial lesions in animals treated with RAD001 was similar to those animals not treated. RAD001 did not block T24 and HT1376 cell proliferation or induce apoptosis. A reduction in cell proliferation rate and therefore G0/G1 phase arrest, as well as a statistically significant induction of apoptosis (P 0.001), was only observed in the 5637 cell line. Conclusion: RAD001 seems not to have a significant effect on chemically induced murine bladder tumors. The effect of RAD001 on tumor proliferation and apoptosis was achieved only in superficial derived bladder cancer cell line, no effect was observed in invasive cell lines.
Resumo:
The compounds [mPTA][CoCl4] (1, mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [CoCl(H2O)(DION)(2)][BF4] (2, DION = 1,10-phenanthroline-5,6-dione), [Zn(DION)(2)]Cl-2 (3) and [ZnCl(O-PTA=O)(DION)][BF4] (4) were synthesized by reaction of CoCl2 with [mPTA]I or DION and ZnCl2 with DION or 1,3,5-triaza-7-phosphaadamantane-7-oxide (PTA=O) and DION, respectively. All complexes are water soluble and have been characterized by IR, far-IR, H-1, C-13 and P-31{H-1} NMR spectroscopy, ESI-MS, elemental analyses and single-crystal X-ray diffraction structural analysis (for 1). They were screened against the human tumour cell lines HCT116, HepG2 and MCF7. Complexes 2 and 3 exhibit the highest in vitro cytotoxicity and show lower cytotoxic activities in normal human fibroblast cell line than in HCT116 tumour cell line, which demonstrates their slight specificity for this type of tumour cell.
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
Resumo:
Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.
Resumo:
Background: CDC25 phosphatases control cell cycle progression by activating cyclin dependent kinases. The three CDC25 isoforms encoding genes are submitted to alternative splicing events which generate at least two variants for CDC25A and five for both CDC25B and CDC25C. An over-expression of CDC25 was reported in several types of cancer, including breast cancer, and is often associated with a poor prognosis. Nevertheless, most of the previous studies did not address the expression of CDC25 splice variants. Here, we evaluated CDC25 spliced transcripts expression in anti-cancerous drug-sensitive and resistant breast cancer cell lines in order to identify potential breast cancer biomarkers. Methods: CDC25 splice variants mRNA levels were evaluated by semi-quantitative RT-PCR and by an original real-time RT-PCR assay. Results: CDC25 spliced transcripts are differentially expres-sed in the breast cancer cell lines studied. An up-regulation of CDC25A2 variant and an increase of the CDC25C5/C1 ratio are associated to the multidrug-resistance in VCREMS and DOXOR breast cancer cells, compared to their sensitive counterpart cell line MCF-7. Additionally, CDC25B2 tran-script is exclusively over-expressed in VCREMS resistant cells and could therefore be involved in the development of certain type of drug resistance. Conclusions: CDC25 splice variants could represent interesting potential breast cancer prognostic biomarkers.
Resumo:
Helicobacter pylori infection represents a serious health problem, given its association with serious gastric diseases as gastric ulcers, cancer and MALT lymphoma. Currently no vaccine exists and antibiotic-based eradication therapy is already failing in more than 20% of cases. To increase the knowledge on the infection process diverse gastric cell lines, e.g. the adenocarcinona gastric (AGS) cell line, are routinely used has in vitro models of gastric epithelia. In the present work the molecular fingerprint of infected and non-infected AGS cell lines, by diverse H. pylori strains, was acquired using vibrational infrared spectroscopy. These molecular fingerprints enabled to discriminate infected from non-infected AGS cells, and infection due to different strains, by performing Principal Component Analysis. It was also possible to estimate, from the AGS cells molecular fingerprint, the effect of the infection on diverse biochemical and metabolic cellular status. In resume infra-red spectroscopy enabled the acquisition of infected AGS cells molecular fingerprint with minimal sample preparation, in a rapid, high-throughput, economic process yielding highly sensitive and informative data, most useful for promoting critical knowledge on the H. pylori infection process. © 2015 IEEE.