13 resultados para Stress corrosion.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Design of improved rail-to-rail low-distortion and low-stress switches in advanced CMOS technologies
Resumo:
This paper describes the efficient design of an improved and dedicated switched-capacitor (SC) circuit capable of linearizing CMOS switches to allow SC circuits to reach low distortion levels. The described circuit (SC linearization control circuit, SLC) has the advantage over conventional clock-bootstrapping circuits of exhibiting low-stress, since large gate voltages are avoided. This paper presents exhaustive corner simulation results of a SC sample-and-hold (S/H) circuit which employs the proposed and optimized circuits, together with the experimental evaluation of a complete 10-bit ADC utilizing the referred S/H circuit. These results show that the SLC circuits can reduce distortion and increase dynamic linearity above 12 bits for wide input signal bandwidths.
Resumo:
This paper is on variable-speed wind turbines with permanent magnet synchronous generator (PMSG). Three different drive train mass models and three different topologies for the power-electronic converters are considered. The three different topologies considered are respectively a matrix, a two-level and a multilevel converter. A novel control strategy, based on fractional-order controllers, is proposed for the wind turbines. Simulation results are presented to illustrate the behaviour of the wind turbines during a converter control malfunction, considering the fractional-order controllers. Finally, conclusions are duly drawn. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Following work on tantalum and chromium implanted flat M50 steel substrates, this work reports on the electrochemical behaviour of M50 steel implanted with tantalum and chromium and the effect of the angle of incidence. Proposed optimum doses for resistance to chloride attack were based on the interpretation of results obtained during long-term and accelerated electrochemical testing. After dose optimization from the corrosion viewpoint, substrates were implanted at different angles of incidence (15°, 30°, 45°, 60°, 75°, 90°) and their susceptibility to localized corrosion assessed using open-circuit measurements, step by step polarization and cyclic voltammetry at several scan rates (5–50 mV s-1). Results showed, for tantalum implanted samples, an ennoblement of the pitting potential of approximately 0.5 V for an angle of incidence of 90°. A retained dose of 5 × 1016 atoms cm-2 was found by depth profiling with Rutherford backscattering spectrometry. The retained dose decreases rapidly with angle of incidence. The breakdown potential varies roughly linearly with the angle of incidence up to 30° falling fast to reach -0.1 V (vs. a saturated calomel electrode (SCE)) for 15°. Chromium was found to behave differently. Maximum corrosion resistance was found for angles of 45°–60° according to current densities and breakdown potentials. Cr+ depth profiles ((p,γ) resonance broadening method), showed that retained doses up to an angle of 60° did not change much from the implanted dose at 90°, 2 × 1017 Cr atoms cm-2. The retained implantation dose for tantalum and chromium was found to follow a (cos θ)8/3 dependence where θ is the angle between the sample normal and the beam direction.
Resumo:
High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.
Resumo:
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.
Resumo:
YAP4, a member of the yeast activator protein (YAP) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only suppresses the osmosensitivity phenotype of the yap4 mutant but also relieves that of the hog1 mutant. Induction, under the conditions tested so far, requires the presence of the transcription factor Msn2p, but not of Msn4p, as YAP4 mRNA levels are depleted by at least 75% in the msn2 mutant. This result was further substantiated by the fact that full YAP4 induction requires the two more proximal stress response elements. Furthermore we find that GCY1, encoding a putative glycerol dehydrogenase, GPP2, encoding a NAD-dependent glycerol-3-phosphate phosphatase, and DCS2, a homologue to a decapping enzyme, have decreased mRNA levels in the yap4 -deleted strain. Our data point to a possible, as yet not entirely understood, role of the YAP4 in osmotic stress response.
Resumo:
A 5-unit polyubiquitin gene, TTU3, was isolated from a T. thermophila genomic library and sequenced. This gene presents an extra triplet coding for Phe, a AGAGA motif and a putative HSE element in its 5'-non-coding region. The ubiquitin gene expression in this ciliate was investigated by Northern blot hybridization in conjugating cells or cells under stress conditions. Exponentially growing cells express two ubiquitin mRNAs of 0.75 and 1.8 kb and a new species of 1.4 kb is induced under hyperthermic stress. During sexual reproduction of the cells (conjugation) the 1.8-kb mRNA is still transcribed whereas the steady-state population of the 0.75 mRNA transcripts is strongly diminished. Southern blot analysis suggests that ubiquitin in T. thermophila constitutes a large family of about ten members.
Resumo:
Objectivos - Na sociedade atual as pessoas são diariamente expostas a inúmeras situações de stress. As exaltações vividas são transformadas em energia pulsional que por sua vez deve ser despendida segundo três vias: psíquica, motora e visceral. Se esta energia não for despendida pelas duas primeiras vias, acumula-se como carga psíquica originando tensão psíquica. A tensão gerada vai repercutir-se na saúde de cada indivíduo. Uma das causas da Coriorretinopatia Central Serosa (CRCS) é o stress. A CRCS é uma patologia de carácter esporádico, caracterizada por um descolamento seroso espontâneo da retina neuro sensorial na região macular, com consequente comprometimento da acuidade visual (AV). Sendo uma patologia de carácter esporádico desencadeada por situações de stress, pretende-se caracterizar as manifestações consequentes desta patologia, bem como abordar os factores diagnósticos da mesma, no caso em estudo. Metodologia - Estudo de caso. Análise de um paciente do sexo masculino, de 36 anos de idade, com diagnóstico de CRCS. Resultados - A CRCS caracteriza-se por um descolamento seroso da retina neuro sensorial na região macular, com comprometimento da visão. O paciente chegou à consulta com queixa de baixa de acuidade visual súbita do olho esquerdo. Realizaram-se exames para concluir o diagnóstico sendo estes, OCT, angiografia e avaliação da acuidade visual. Na angiografia verifica-se afeção da área macular, ao OCT verifica-se descolamento seroso da retina neuro sensorial na região macular. A acuidade visual era de 6/10 no olho esquerdo e 10/10 no olho direito. Apresentava ainda queixas de metamorfopsias. Discussão / Conclusão - Ainda que a etiologia da CRCS não seja totalmente conhecida, encontra-se associada a situações de stress, a hipertensão arterial, a comportamentos decorrentes da forma exagerada e ansiosa de viver, à competitividade, gravidez e medicação sistémica de esteróides. O tratamento inicial recomendado é repouso absoluto, caso se verifique insucesso o tratamento passará pela realização de terapia fotodinâmica.
Resumo:
Objectives - To identify occupational stressors and coping resources in a group of physiotherapists, and to analyse interactions between subjective levels of stress, efficacy in stress resolution and coping resources used by these professionals. Design - A sample of 55 physiotherapists working in three general hospitals in Portugal completed the Coping Resources Inventory for Stress, the Occupational Stressors Inventory and two subjective scales for stress and stress resolution. Main results - Most physiotherapists perceived that they were moderately stressed (19/55, 35%) or stressed (20/55, 36%) due to work, and reported that their efficacy in stress resolution was moderate (25/54, 46%) or efficient (23/54, 42%). Issues related to lack of professional autonomy, lack of organisation in the hierarchical command chain, lack of professional and social recognition, disorganisation in task distribution and interpersonal conflicts with superiors were identified as the main sources of stress. The most frequently used coping resources were social support, stress monitoring, physical health and structuring. Perceived efficacy in stress resolution was inversely related to perceived level of occupational stress (r = −0.61, P < 0.01). Significant correlations were found between several coping resources and the perceived level of stress and efficacy in stress resolution. Associations between problem solving, cognitive restructuring and stress monitoring and both low levels of perceived stress and high levels of perceived efficacy were particularly strong. Implications for practice - The importance of identifying stressors and coping resources related to physiotherapists’ occupational stress, and the need for the development of specific training programmes to cope with stress are supported.
Resumo:
Mg alloys can be used as bioresorsable metallic implants. However, the high corrosion rate of magnesium alloys has limited their biomedical applications. Although Mg ions are essential to the human body, an excess may cause undesirable health effects. Therefore, surface treatments are required to enhance the corrosion resistance of magnesium parts, decreasing its rate to biocompatible levels and allowing its safe application as bioresorbable metallic implants. The application of biocompatible silane coatings is envisaged as a suitable strategy for retarding the corrosion process of magnesium alloys. In the current work, a new glycidoxypropyltrimethoxysilane (GPTMS) based coating was tested on AZ31 magnesium substrates subjected to different surface conditioning procedures before coating deposition. The surface conditioning included a short etching with hydrofluoric acid (HF) or a dc polarisation in alkaline electrolyte. The silane coated samples were immersed in Hank's solution and the protective performance of the coating was studied through electrochemical impedance spectroscopy (EIS). The EIS data was treated by new equivalent circuit models and the results revealed that the surface conditioning process plays a key role in the effectiveness of the silane coating. The HF treated samples led to the highest impedance values and delayed the coating degradation, compared to the mechanically polished samples or to those submitted to dc polarisation.
Resumo:
Introduction: University students are frequently exposed to events that can cause stress and anxiety, producing elevated cardiovascular responses. Repeated exposure to academic stress has implications to students’ success and well-being and may contribute to the development of long-term health problems. Objective: To identify stress levels and coping strategies in university students and assess the impact of stress experience in heart rate variability (HRV). Methods: 17 university students, 19-23 years, completed the University Students Stress Inventory, the Depression Anxiety Stress Scales and the Ways of Coping Questionnaire. Two 24h-Holter recordings were performed, on academic activity days, including one of them an exam situation. Results: Students tend to present moderate stress levels, and prefer problem-focused coping strategies in order to manage stress. Exam situations are perceived as significant stressors. Although we found no significant differences in HRV (SDNN), between days with and without an exam, we registered a lower SDNN score and a variation in heart rate (HR) related to exam situation (maximum HR peak at 10 minutes before the exam, and total HR recovery 20 minutes after the exam), reflecting sympathetic activation due to stress. Conclusions: These results suggest that academic events, especially those related to exam situations, are the cause of stress in university students, with implications at cardiovascular level, underlying the importance of interventions that help these students improve their coping skills and optimize stress management, in order to improve academic achievement and promote well-being and quality of life.
Resumo:
Mg alloys are very susceptible to corrosion in physiological media. This behaviour limits its widespread use in biomedical applications as bioresorbable implants, but it can be controlled by applying protective coatings. On one hand, coatings must delay and control the degradation process of the bare alloy and, on the other hand, they must be functional and biocompatible. In this study a biocompatible polycaprolactone (PCL) coating was functionalised with nano hydroxyapatite (HA) particles for enhanced biocompatibility and with an antibiotic, cephalexin, for anti-bacterial purposes and applied on the AZ31 alloy. The chemical composition and the surface morphology of the coated samples, before and after the corrosion tests, were studied by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX) and Raman. The results showed that the presence of additives induced the formation of agglomerates and defects in the coating that resulted in the formation of pores during immersion in Hanks' solution. The corrosion resistance of the coated samples was studied in Hank's solution by electrochemical impedance spectroscopy (EIS). The results evidenced that all the coatings can provide corrosion protection of the bare alloy. However, in the presence of the additives, corrosion protection decreased. The wetting behaviour of the coating was evaluated by the static contact angle method and it was found that the presence of both hydroxyapatite and cephalexin increased the hydrophilic behaviour of the surface. The results showed that it is possible to tailor a composite coating that can store an antibiotic and nano hydroxyapatite particles, while allowing to control the in-vitro corrosion degradation of the bioresorbable Mg alloy AZ31. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.