21 resultados para Road classification

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese tem por objectivo o desenho e avaliação de um sistema de contagem e classificação de veículos automóveis em tempo-real e sem fios. Pretende, também, ser uma alternativa aos actuais equipamentos, muito intrusivos nas vias rodoviárias. Esta tese inclui um estudo sobre as comunicações sem fios adequadas a uma rede de equipamentos sensores rodoviários, um estudo sobre a utilização do campo magnético como meio físico de detecção e contagem de veículos e um estudo sobre a autonomia energética dos equipamentos inseridos na via, com recurso, entre outros, à energia solar. O projecto realizado no âmbito desta tese incorpora, entre outros, a digitalização em tempo real da assinatura magnética deixada pela passagem de um veículo, no campo magnético da Terra, o respectivo envio para servidor via rádio e WAN, Wide Area Network, e o desenvolvimento de software tendo por base a pilha de protocolos ZigBee. Foram desenvolvidas aplicações para o equipamento sensor, para o coordenador, para o painel de controlo e para a biblioteca de Interface de um futuro servidor aplicacional. O software desenvolvido para o equipamento sensor incorpora ciclos de detecção e digitalização, com pausas de adormecimento de baixo consumo, e a activação das comunicações rádio durante a fase de envio, assegurando assim uma estratégia de poupança energética. Os resultados obtidos confirmam a viabilidade desta tecnologia para a detecção e contagem de veículos, assim como para a captura de assinatura usando magnetoresistências. Permitiram ainda verificar o alcance das comunicações sem fios com equipamento sensor embebido no asfalto e confirmar o modelo de cálculo da superfície do painel solar bem como o modelo de consumo energético do equipamento sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an integrated system for vehicle classification. This system aims to classify vehicles using different approaches: 1) based on the height of the first axle and_the number of axles; 2) based on volumetric measurements and; 3) based on features extracted from the captured image of the vehicle. The system uses a laser sensor for measurements and a set of image analysis algorithms to compute some visual features. By combining different classification methods, it is shown that the system improves its accuracy and robustness, enabling its usage in more difficult environments satisfying the proposed requirements established by the Portuguese motorway contractor BRISA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An atmospheric aerosol study was performed in 2008 inside an urban road tunnel, in Lisbon, Portugal. Using a high volume impactor, the aerosol was collected into four size fractions (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) and analysed for particle mass (PM), organic and elemental carbon (OC and EC), polycyclic aromatic hydrocarbons (PAH), soluble inorganic ions and elemental composition. Three main groups of compounds were discriminated in the tunnel aerosol: carbonaceous, soil component and vehicle mechanical wear. Measurements indicate that Cu can be a good tracer for wear emissions of road traffic. Cu levels correlate strongly with Fe, Mn, Sn and Cr, showing a highly linear constant ratio in all size ranges, suggesting a unique origin through sizes. Ratios of Cu with other elements can be used to source apportion the trace elements present in urban atmospheres, mainly on what concerns coarse aerosol particles. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic liver disease (CLD) is most of the time an asymptomatic, progressive, and ultimately potentially fatal disease. In this study, an automatic hierarchical procedure to stage CLD using ultrasound images, laboratory tests, and clinical records are described. The first stage of the proposed method, called clinical based classifier (CBC), discriminates healthy from pathologic conditions. When nonhealthy conditions are detected, the method refines the results in three exclusive pathologies in a hierarchical basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) decompensated cirrhosis. The features used as well as the classifiers (Bayes, Parzen, support vector machine, and k-nearest neighbor) are optimally selected for each stage. A large multimodal feature database was specifically built for this study containing 30 chronic hepatitis cases, 34 compensated cirrhosis cases, and 36 decompensated cirrhosis cases, all validated after histopathologic analysis by liver biopsy. The CBC classification scheme outperformed the nonhierachical one against all scheme, achieving an overall accuracy of 98.67% for the normal detector, 87.45% for the chronic hepatitis detector, and 95.71% for the cirrhosis detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prémio - CEN/TC 287 AWARD FOR EXCELLENCE IN INSIRE 2012 Implementation of the INSPIRE Directive on Road Infrastructure in Portugal Inês Soares, aluna de Mestrado em engenharia civil do ISEL, Instituto Superior de Engenharia de Lisboa e Paulo Martins, e o seu orientador, receberam um prémio europeu, no dia 27 de junho, em Istambul na Turquia, numa conferência internacional organizada pela Comissão Europeia e pelo governo Turco.  A jovem portuguesa foi escolhida entre cerca de 20 candidatos de vários países. Paulo Matos Martins, professor no ISEL, além de mentor do trabalho premiado, foi orientador de mestrado da aluna e explica que se trata de um estudo sobre a aplicação da Diretiva comunitária INSPIRE à infraestrutura rodoviária nacional que contou com a estreita colaboração do InIR, Instituto da Infraestrutura Rodoviária através da coorientação da engenheira Adelaide Costa e colaboração técnica do engenheiro Rui Luso Soares.  O projeto-piloto correspondeu à criação de uma aplicação informática que permite aceder a informação geográfica harmonizada relativa à infraestrutura rodoviária nacional, de acordo com as disposições de execução INSPIRE, dando cumprimento aos requisitos impostos pela Diretiva às entidades responsáveis por este tipo de informação, entre as quais se incluem diversos organismos públicos (podendo no futuro vir a incluir as autarquias), permitindo aos decisores políticos e a todos os cidadãos o fácil acesso a informação de qualidade sobre as infraestruturas, o território e o ambiente. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a spatial econometrics analysis for the number of road accidents with victims in the smallest administrative divisions of Lisbon, considering as a baseline a log-Poisson model for environmental factors. Spatial correlation on data is investigated for data alone and for the residuals of the baseline model without and with spatial-autocorrelated and spatial-lagged terms. In all the cases no spatial autocorrelation was detected.