12 resultados para Py-GC-MS
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Eucalyptus globulus heartwood, sapwood and their delignified samples by kraft pulping at 130, 150 and 170 degrees C along time were characterized in respect to total carbohydrates by Py-GC/MS(FID). No significant differences between heartwood and sapwood were found in relation to pyrolysis products and composition. The main wood carbohydrate derived pyrolysis compounds were levoglucosan (25.1%), hydroxyacetaldehyde (12.5%), 2-oxo-propanal (10.3%) and acetic acid (8.7%). Levoglucosan decreased during the early stages of delignification and increased during the bulk and residual phases. Acetic acid decreased hydroxyacetaldehyde and 2-oxo-propanal increased, and 2-furaldehyde and hydroxypropanone remained almost constant during delignification. The C/L ratio was 3.2 in wood and remained rather constant in the first pulping periods until a loss of 15-25% in carbohydrate and 60% in lignin. Afterwards it increased sharply until 44 that correspond to the removal of 25-35% of carbohydrates and 95% of lignin. The pulping reactive selectivity to lignin vs. polysaccharides was the same for sapwood and heartwood. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Cork samples from Betula pendula, Quercus suber and Quercus cerris were submitted to Py-GC-MS/FID at temperatures between 550 degrees C and 900 degrees C and the pyrolysis-derived compounds (py-products) were identified and quantified. Corks were compared with wood samples. Py-products include suberin, lignin and carbohydrates derivatives. Suberin py-products are dominated by unsaturated aliphatics. Corks pyrolysis yield and composition were dramatically influenced by temperature in contrast to wood that showed stable results across temperatures. At 850-900 degrees C the peaks area of cork pyrograms were approximately two times higher than at 550 degrees C, for which yield was about half of the woods, and cork py-products were dominated by suberin-derived short chain aliphatics, namely 1-alkenes, while at 550 degrees C composition was dominated by lignin derivatives. Lignin and carbohydrate derived products decreased dramatically over 750 degrees C while the opposite was observed for unsaturated aliphatics. Cork materials show a high potential as feedstock for production of aliphatic-rich pyrolytic biofuels or as a source of olefins. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Eucalyptus globulus sapwood and heartwood showed no differences in lignin content (23.0% vs. 23.7%) and composition: syringyl-lignin (17.9% vs. 18.0%) and guaiacyl-lignin (4.8% vs. 5.2%). Delignification kinetics of S- and G-units in heartwood and sapwood was investigated by Py-GC–MS/FID at 130, 150 and 170 °C and modeled as double first-order reactions. Reactivity differences between S and G-units were small during the main pulping phase and the higher reactivity of S over G units was better expressed in the later pulping stage. The residual lignin composition in pulps was different from wood or from samples in the initial delignification stages, with more G and H-units. S/G ratio ranged from 3 to 4.5 when pulp residual lignin was higher than 10%, decreasing rapidly to less than 1. The S/H was initially around 20 (until 15% residual lignin), decreasing to 4 when residual lignin was about 3%.
Resumo:
The kraft pulps produced from heartwood and sapwood of Eucalyptus globulus at 130 degrees C, 150 degrees C, and 170 degrees C were characterized by wet chemistry (total lignin as sum of Klason and soluble lignin fractions) and pyrolysis (total lignin denoted as py-lignin). The total lignin content obtained with both methods was similar. In the course of delignification, the py-lignin values were higher (by 2 to 5%) compared to Klason values, which is in line with the importance of soluble lignin for total lignin determination. Pyrolysis analysis presents advantages over wet chemical procedures, and it can be applied to wood and pulps to determine lignin contents at different stages of the delignification process. The py-lignin values were used for kinetic modelling of delignification, with very high predictive value and results similar to those of modelling using wet chemical determinations.
Resumo:
Four Cynara cardunculus clones, two from Portugal and two from Spain were studied for biomass production and their lignin was characterized. The clones differed in biomass partitioning: Spanish clones produced more capitula (54.5% vs. 43.9%), and Portuguese clones more stalks (37.2% vs. 25.6%). The heating values (HHV0) of the stalks were similar, ranging from 17.1 to 18.4 MJ/kg. Lignin was studied by analytical pyrolysis (Py-GC/MS(FID)), separately in depithed stalks (stalksDP) and pith. StalksDP had in average higher relative proportions of lignin derived compounds than pith (23.9% vs. 21.8%) with slightly different lignin monomeric composition: pith samples were richer in syringyl units as compared to stalksDP (64% vs. 53%), with S/G ratios of 2.1 and 1.3, respectively. The H:G:S composition was 7:40:53 in stalksDP and 7:29:64 in pith. The lignin content ranged from 18.8% to 25.5%, enabling a differentiation between clones and provenances. © 2015 Elsevier Ltd. All rights reserved.
Resumo:
The structure of lignin and suberin, and ferulic acid (FA) content in cork from Quercus suber L. were studied. Extractive-free cork (Cork), suberin, desuberized cork (Cork(sap)), and milled-cork lignins (MCL) from Cork and Cork(sap) were isolated. Suberin composition was determined by GC-MS/FID, whereas the polymers structure in Cork, Corksap, and MCL was studied by Py-TMAH and 2D-HSQC-NMR. Suberin contained 94.4% of aliphatics and 3.2% of phenolics, with 90% of omega-hydroxyacids and alpha,omega-diacids. FA represented 2.7% of the suberin monomers, overwhelmingly esterified to the cork matrix. Py-TMAH revealed significant FA amounts in all samples, with about 3% and 6% in cork and cork lignins, respectively. Py-TMAH and 2D-HSQC-NMR demonstrated that cork lignin is a G-lignin (>96% G units), with a structure dominated by beta-O-4' alkyl-aryl ether linkages (80% and 77% of all linkages in MCL and MCLsap, respectively), followed by phenylcoumarans (18% and 20% in MCL and MCLsap, respectively), and smaller amounts of resinols (ca. 2%) and dibenzodioxocins (1%). HSQC also revealed that cork lignin is heavily acylated (ca. 50%) exclusively at the side-chain gamma-position. Ferulates possibly have an important function in the chemical assembly of cork cell walls with a cross-linking role between suberin, lignin and carbohydrates.
Resumo:
The mycelium and young fruiting bodies of Agaricus blazei were submitted to supercritical CO2 extraction, in a modified commercial flow apparatus, at temperatures from 40 to 80 ºC, pressures up to 600 bar and CO2 flow-rates from 2.0 to 9.0 g.min-1. The best extraction conditions of secondary metabolites, whereby the degree of solubilization (g extract/100 g of fungi) is the highest, was obtained with pure CO2 at 400 bar, 70 ºC and a CO2 flow rate of 5.7g.min-1. The extract in that conditions were analysed by GC-Ms. In order to increase the extraction yield of secondary metabolites, which are mostly present in glycolipid fractions, a polar compound (ethanol) was used as co-solvent in the proportions of 5 and 10 % (mol/mol). The presence of ethanol increased the yield when compared with the extraction with pure CO2. Moreover, a simple model was applied to the supercritical CO2 extraction of secondary metabolites from Agaricus blazei.
Resumo:
Supercritical fluid extraction (SEE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC-MS and 52 components were identified. The main volatile components obtained were p-cymene (10.0-42.6% for SFE and 28.9-34.8% for HD), gamma-terpinene (0.8-6.9% for SFE and 5.1-7.0% for HD), linalool (2.3-5.3% for SFE and 2.8-3.1% for HD), thymol (19.5-40.8% for SFE and 35.4-41.6% for HD), and carvacrol (1.4-3.1% for SFE and 2.6-3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0-1.2% for HD versus t-0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.
Resumo:
BACKGROUND: Characterisation of the essential oils from O. glandulosum collected in three locations of Tunisia, chemical composition and the evaluation of their antioxidant activities were carried out. RESULTS: The essential oils from Origanum vulgare L. subsp. glandulosum (Desf.) letswaart collected from three localities of north Tunisia - Krib, Bargou and Nefza - were obtained in yields of 2.5, 3.0 and 4.6% (v/w), respectively. The essential oils were analysed by GC and GC/MS and assayed for their total phenolics content, by the Folin-Ciocalteu method, and antioxidant effectiveness, using the 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging assay. The main components of these essential oils, from Nefza, Bargou and Krib, were p-cymene (36%, 40% and 46%), thymol (32%, 39% and 18%), gamma-terpinene (24%, 12% and 16%) and carvacrol (2%, 2% and 15%), respectively). The ability to scavenge the DPPH radicals, expressed by IC50, ranged from 59 to 80 mg L-1. The total phenolic content, expressed in gallic acid equivalent (GAE) g kg(-1) dry weight, varied from 9.37 to 17.70 g kg(-1) dw. CONCLUSIONS: A correlation was identified between the total phenolic content of the essential oils and DPPH radical scavenger capacity. The occurrence of a p-cymene chemotype of O. glandulosum in the northern region of Tunisia is demonstrated.
Resumo:
Mestrado em Segurança e Higiene do Trabalho.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de mestre em Engenharia Química e Biológica
Resumo:
Dried flowers and leaves of Origanum glandulosum Desf. were submitted to hydrodistillation (HD) and supercritical fluid extraction with CO2 (SFE). The essential oils isolated by HD and volatile oils obtained by SFE were analysed by GC and GC/MS. Total phenolics content and antioxidant effectiveness were performed. The main components of the essential oils from Bargou and Nefza were: p-cymene (40.4% and 39%), thymol (38.7% and 34.4%) and γ- terpinene (12.3% and 19.2%), respectively. The major components obtain by SFE in the volatile oil, from Bargou and Nefza, were: p-cymene (32.3% and 36.2%), thymol (41% and 40%) and γ-terpinene (20.3% and 13.3%). Total phenolic content, expressed in gallic acid equivalent (GAE) g kg-1 dry weight, varied from 12 to 27 g kg-1 dw, and the ability to scavenge the DPPH radicals, expressed by IC50 ranged from 44 to143 mg L-1.