43 resultados para Pareto optimal solutions
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde.
Resumo:
Os reguladores de tensão LDO são utilizados intensivamente na actual indústria de electrónica, são uma parte essencial de um bloco de gestão de potência para um SoC. O aumento de produtos portáteis alimentados por baterias levou ao crescimento de soluções totalmente integradas, o que degrada o rendimento dos blocos analógicos que o constituem face às perturbações introduzidas na alimentação. Desta forma, surge a necessidade de procurar soluções cada vez mais optimizadas, impondo assim novas soluções, e/ou melhoramentos dos circuitos de gestão de potência, tendo como objectivo final o aumento do desempenho e da autonomia dos dispositivos electrónicos. Normalmente este tipo de reguladores tem a corrente de saída limitada, devido a problemas de estabilidade associados. Numa tentativa de evitar a instabilidade para as correntes de carga definidas e aumentar o PSRR do mesmo, é apresentado um método de implementação que tem como objectivo melhorar estas características, em que se pretende aumentar o rendimento e melhorar a resposta à variação da carga. No entanto, a técnica apresentada utiliza polarização adaptativa do estágio de potência, o que implica um aumento da corrente de consumo. O regulador LDO foi implementado na tecnologia CMOS UMC 0.18μm e ocupa uma área inferior a 0,2mm2. Os resultados da simulação mostram que o mesmo suporta uma transição de corrente 10μA para 100mA, com uma queda de tensão entre a tensão de alimentação e a tensão de saída inferior a 200mV. A estabilidade é assegurada para todas as correntes de carga. O tempo de estabelecimento é inferior a 6μs e as variações da tensão de saída relativamente a seu valor nominal são inferiores a 5mV. A corrente de consumo varia entre os 140μA até 200μA, o que permite atingir as especificações proposta para um PSRR de 40dB@10kHz.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica com especialização em Energia, Climatização e Refrigeração
Resumo:
The optimal design of laminated sandwich panels with viscoelastic core is addressed in this paper, with the objective of simultaneously minimizing weight and material cost and maximizing modal damping. The design variables are the number of layers in the laminated sandwich panel, the layer constituent materials and orientation angles and the viscoelastic layer thickness. The problem is solved using the Direct MultiSearch (DMS) solver for multiobjective optimization problems which does not use any derivatives of the objective functions. A finite element model for sandwich plates with transversely compressible viscoelastic core and anisotropic laminated face layers is used. Trade-off Pareto optimal fronts are obtained and the results are analyzed and discussed.
Resumo:
The optimal design of cold-formed steel columns is addressed in this paper, with two objectives: maximize the local-global buckling strength and maximize the distortional buckling strength. The design variables of the problem are the angles of orientation of cross-section wall elements the thickness and width of the steel sheet that forms the cross-section are fixed. The elastic local, distortional and global buckling loads are determined using Finite Strip Method (CUFSM) and the strength of cold-formed steel columns (with given length) is calculated using the Direct Strength Method (DSM). The bi-objective optimization problem is solved using the Direct MultiSearch (DMS) method, which does not use any derivatives of the objective functions. Trade-off Pareto optimal fronts are obtained separately for symmetric and anti-symmetric cross-section shapes. The results are analyzed and further discussed, and some interesting conclusions about the individual strengths (local-global and distortional) are found.
Resumo:
n this paper we make an exhaustive study of the fourth order linear operator u((4)) + M u coupled with the clamped beam conditions u(0) = u(1) = u'(0) = u'(1) = 0. We obtain the exact values on the real parameter M for which this operator satisfies an anti-maximum principle. Such a property is equivalent to the fact that the related Green's function is nonnegative in [0, 1] x [0, 1]. When M < 0 we obtain the best estimate by means of the spectral theory and for M > 0 we attain the optimal value by studying the oscillation properties of the solutions of the homogeneous equation u((4)) + M u = 0. By using the method of lower and upper solutions we deduce the existence of solutions for nonlinear problems coupled with this boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We investigate a mechanism that generates exact solutions of scalar field cosmologies in a unified way. The procedure investigated here permits to recover almost all known solutions, and allows one to derive new solutions as well. In particular, we derive and discuss one novel solution defined in terms of the Lambert function. The solutions are organised in a classification which depends on the choice of a generating function which we have denoted by x(phi) that reflects the underlying thermodynamics of the model. We also analyse and discuss the existence of form-invariance dualities between solutions. A general way of defining the latter in an appropriate fashion for scalar fields is put forward.
Resumo:
We show photorheology in aqueous solutions of weakly entangled wormlike micelles prepared with cetyltrimethylammonium bromide (CTAB), salicylic acid (HSal), and dilute amounts of the photochromic multistate compound trans-2,4,4'-trihydroxychalcone (Ct). Different chemical species of Ct are associated with different colorations and propensities to reside within or outside CTAB micelles. A light-induced transfer between the intra- and intermicellar space is used to alter the mean length of wormlike micelles and hence the rheological properties of the fluid, studied in steady-state shear Bow and in dynamic rheological measurements. Light-induced changes of fluid rheology are reversible by a the relaxation process. at relaxation rates which depend on pH and which are consistent with photochromic reversion rates measured by UV-vis absorption spectroscopy. Parameterizing viscoelostic rheological states by their effective relaxation time tau(c) and corresponding response modulus G(c), we find the light and dark states of the system to fall onto a characteristic state curve defined by comparable experiments conducted without photosensitive components. These reference experiments were prepared with the same concentration of CTAB, but different concentrations of HSal or sodium salicylote (NaSal), and tested at different temperatures.
Resumo:
This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.
Resumo:
We start by studying the existence of positive solutions for the differential equation u '' = a(x)u - g(u), with u ''(0) = u(+infinity) = 0, where a is a positive function, and g is a power or a bounded function. In other words, we are concerned with even positive homoclinics of the differential equation. The main motivation is to check that some well-known results concerning the existence of homoclinics for the autonomous case (where a is constant) are also true for the non-autonomous equation. This also motivates us to study the analogous fourth-order boundary value problem {u((4)) - cu '' + a(x)u = vertical bar u vertical bar(p-1)u u'(0) = u'''(0) = 0, u(+infinity) = u'(+infinity) = 0 for which we also find nontrivial (and, in some instances, positive) solutions.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to eat her studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement.
Resumo:
A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.
Resumo:
Esta tese tem como principal objectivo a investigação teórica e experimental do desempenho de um sensor polarimétrico baseado num cristal líquido para medição da concentração de glicose. Recentemente uma série de sensores polarimétricos baseados em cristais líquidos foram propostos na literatura e receberam considerável interesse devido as suas características únicas. De facto, em comparação com outros moduladores electro-ópticos, o cristal líquido funciona com tensões mais baixas, tem baixo consumo de energia e maior ângulo de rotação. Além disso, este tipo de polarímetro pode ter pequenas dimensões que é uma característica interessante para dispositivos portáteis e compactos. Existem por outro lado algumas desvantagens, nomeadamente o facto do desempenho do polarímetro ser fortemente dependente do tipo de cristal líquido e da tensão a ele aplicada o que coloca desafios na escolha dos parâmetros óptimos de operação. Esta tese descreve o desenvolvimento do sensor polarimétrico, incluindo a integração dos componentes de óptica e electrónica, os algoritmos de processamento de sinal e um interface gráfico que facilita a programação de diversos parâmetros de operação e a calibração do sensor. Após a optimização dos parâmetros de operação verificou-se que o dispositivo mede a concentração da glicose em amostras com uma concentração de 8 mg/ml, com uma percentagem de erro inferior a 6% e um desvio padrão de 0,008o. Os resultados foram obtidos para uma amostra com percurso óptico de apenas 1 cm.
Resumo:
We study the design of optimal insurance contracts when the insurer can default on its obligations. In our model default arises endogenously from the interaction of the insurance premium, the indemnity schedule and the insurer’s assets. This allows us to understand the joint effect of insolvency risk and background risk on efficient contracts. The results may shed light on the aggregate risk retention sched- ules observed in catastrophe reinsurance markets, and can assist in the design of (re)insurance programs and guarantee funds.
Resumo:
We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.