25 resultados para Muti-Modal Biometrics, User Authentication, Fingerprint Recognition, Palm Print Recognition
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.
Resumo:
The potential of the electrocardiographic (ECG) signal as a biometric trait has been ascertained in the literature over the past decade. The inherent characteristics of the ECG make it an interesting biometric modality, given its universality, intrinsic aliveness detection, continuous availability, and inbuilt hidden nature. These properties enable the development of novel applications, where non-intrusive and continuous authentication are critical factors. Examples include, among others, electronic trading platforms, the gaming industry, and the auto industry, in particular for car sharing programs and fleet management solutions. However, there are still some challenges to overcome in order to make the ECG a widely accepted biometric. In particular, the questions of uniqueness (inter-subject variability) and permanence over time (intra-subject variability) are still largely unanswered. In this paper we focus on the uniqueness question, presenting a preliminary study of our biometric recognition system, testing it on a database encompassing 618 subjects. We also performed tests with subsets of this population. The results reinforce that the ECG is a viable trait for biometrics, having obtained an Equal Error Rate of 9.01% and an Error of Identification of 15.64% for the entire test population.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Biometric recognition is emerging has an alternative solution for applications where the privacy of the information is crucial. This paper presents an embedded biometric recognition system based on the Electrocardiographic signals (ECG) for individual identification and authentication. The proposed system implements a real-time state-of-the-art recognition algorithm, which extracts information from the frequency domain. The system is based on a ARM Cortex 4. Preliminary results show that embedded platforms are a promising path for the implementation of ECG-based applications in real-world scenario.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Behavioral biometrics is one of the areas with growing interest within the biosignal research community. A recent trend in the field is ECG-based biometrics, where electrocardiographic (ECG) signals are used as input to the biometric system. Previous work has shown this to be a promising trait, with the potential to serve as a good complement to other existing, and already more established modalities, due to its intrinsic characteristics. In this paper, we propose a system for ECG biometrics centered on signals acquired at the subject's hand. Our work is based on a previously developed custom, non-intrusive sensing apparatus for data acquisition at the hands, and involved the pre-processing of the ECG signals, and evaluation of two classification approaches targeted at real-time or near real-time applications. Preliminary results show that this system leads to competitive results both for authentication and identification, and further validate the potential of ECG signals as a complementary modality in the toolbox of the biometric system designer.
Resumo:
Electrocardiogram (ECG) biometrics are a relatively recent trend in biometric recognition, with at least 13 years of development in peer-reviewed literature. Most of the proposed biometric techniques perform classifi-cation on features extracted from either heartbeats or from ECG based transformed signals. The best representation is yet to be decided. This paper studies an alternative representation, a dissimilarity space, based on the pairwise dissimilarity between templates and subjects' signals. Additionally, this representation can make use of ECG signals sourced from multiple leads. Configurations of three leads will be tested and contrasted with single-lead experiments. Using the same k-NN classifier the results proved superior to those obtained through a similar algorithm which does not employ a dissimilarity representation. The best Authentication EER went as low as 1:53% for a database employing 503 subjects. However, the employment of extra leads did not prove itself advantageous.
Resumo:
The use of iris recognition for human authentication has been spreading in the past years. Daugman has proposed a method for iris recognition, composed by four stages: segmentation, normalization, feature extraction, and matching. In this paper we propose some modifications and extensions to Daugman's method to cope with noisy images. These modifications are proposed after a study of images of CASIA and UBIRIS databases. The major modification is on the computationally demanding segmentation stage, for which we propose a faster and equally accurate template matching approach. The extensions on the algorithm address the important issue of pre-processing that depends on the image database, being mandatory when we have a non infra-red camera, like a typical WebCam. For this scenario, we propose methods for reflection removal and pupil enhancement and isolation. The tests, carried out by our C# application on grayscale CASIA and UBIRIS images show that the template matching segmentation method is more accurate and faster than the previous one, for noisy images. The proposed algorithms are found to be efficient and necessary when we deal with non infra-red images and non uniform illumination.
Resumo:
Comunication in Internationa Conference with Peer Review First International Congress on Cardiovasular Technologies - CARDIOTECHNIX, Vilamoura, Portugal, 2013
Resumo:
Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.
Resumo:
O presente projecto tem como objectivo a disponibilização de uma plataforma de serviços para gestão e contabilização de tempo remunerável, através da marcação de horas de trabalho, férias e faltas (com ou sem justificação). Pretende-se a disponibilização de relatórios com base nesta informação e a possibilidade de análise automática dos dados, como por exemplo excesso de faltas e férias sobrepostas de trabalhadores. A ênfase do projecto está na disponibilização de uma arquitectura que facilite a inclusão destas funcionalidades. O projecto está implementado sobre a plataforma Google App Engine (i.e. GAE), de forma a disponibilizar uma solução sob o paradigma de Software as a Service, com garantia de disponibilidade e replicação de dados. A plataforma foi escolhida a partir da análise das principais plataformas cloud existentes: Google App Engine, Windows Azure e Amazon Web Services. Foram analisadas as características de cada plataforma, nomeadamente os modelos de programação, os modelos de dados disponibilizados, os serviços existentes e respectivos custos. A escolha da plataforma foi realizada com base nas suas características à data de iniciação do presente projecto. A solução está estruturada em camadas, com as seguintes componentes: interface da plataforma, lógica de negócio e lógica de acesso a dados. A interface disponibilizada está concebida com observação dos princípios arquitecturais REST, suportando dados nos formatos JSON e XML. A esta arquitectura base foi acrescentada uma componente de autorização, suportada em Spring-Security, sendo a autenticação delegada para os serviços Google Acounts. De forma a permitir o desacoplamento entre as várias camadas foi utilizado o padrão Dependency Injection. A utilização deste padrão reduz a dependência das tecnologias utilizadas nas diversas camadas. Foi implementado um protótipo, para a demonstração do trabalho realizado, que permite interagir com as funcionalidades do serviço implementadas, via pedidos AJAX. Neste protótipo tirou-se partido de várias bibliotecas javascript e padrões que simplificaram a sua realização, tal como o model-view-viewmodel através de data binding. Para dar suporte ao desenvolvimento do projecto foi adoptada uma abordagem de desenvolvimento ágil, baseada em Scrum, de forma a implementar os requisitos do sistema, expressos em user stories. De forma a garantir a qualidade da implementação do serviço foram realizados testes unitários, sendo também feita previamente a análise da funcionalidade e posteriormente produzida a documentação recorrendo a diagramas UML.
Resumo:
Large area hydrogenated amorphous silicon single and stacked p-i-n structures with low conductivity doped layers are proposed as monochrome and color image sensors. The layers of the structures are based on amorphous silicon alloys (a-Si(x)C(1-x):H). The current-voltage characteristics and the spectral sensitivity under different bias conditions are analyzed. The output characteristics are evaluated under different read-out voltages and scanner wavelengths. To extract information on image shape, intensity and color, a modulated light beam scans the sensor active area at three appropriate bias voltages and the photoresponse in each scanning position ("sub-pixel") is recorded. The investigation of the sensor output under different scanner wavelengths and varying electrical bias reveals that the response can be tuned, thus enabling color separation. The operation of the sensor is exemplified and supported by a numerical simulation.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Mestrado em Contabilidade
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC