48 resultados para Moderate resolution imaging spectroradiometer

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new Rayleigh-wave dispersion maps of the western Iberian Peninsula for periods between 8 and 30 s, obtained from correlations of seismic ambient noise, following the recent increase in seismic broadband network density in Portugal and Spain. Group velocities have been computed for each station pair using the empirical Green's functions generated by cross-correlating one-day-length seismic ambient-noise records. The resulting high-path density allows us to obtain lateral variations of the group velocities as a function of period in cells of 0.5 degrees x 0.5 degrees with an unprecedented resolution. As a result we were able to address some of the unknowns regarding the lithospheric structure beneath SW Iberia. The dispersion maps allow the imaging of the major structural units, namely the Iberian Massif, and the Lusitanian and Algarve Meso-Cenozoic basins. The Cadiz Gulf/Gibraltar Strait area corresponds to a strong low-velocity anomaly, which can be followed to the largest period inverted, although slightly shifted to the east at longer periods. Within the Iberian Massif, second-order perturbations in the group velocities are consistent with the transitions between tectonic units composing the massif. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a 3-D gravity model for the volcanic structure of the island of Maio (Cape Verde archipelago) with the objective of solving some open questions concerning the geometry and depth of the intrusive Central Igneous Complex. A gravity survey was made covering almost the entire surface of the island. The gravity data was inverted through a non-linear 3-D approach which provided a model constructed in a random growth process. The residual Bouguer gravity field shows a single positive anomaly presenting an elliptic shape with a NWSE trending long axis. This Bouguer gravity anomaly is slightly off-centred with the island but its outline is concordant with the surface exposure of the Central Igneous Complex. The gravimetric modelling shows a high-density volume whose centre of mass is about 4500 m deep. With increasing depth, and despite the restricted gravimetric resolution, the horizontal sections of the model suggest the presence of two distinct bodies, whose relative position accounts for the elongated shape of the high positive Bouguer gravity anomaly. These bodies are interpreted as magma chambers whose coeval volcanic counterparts are no longer preserved. The orientation defined by the two bodies is similar to that of other structures known in the southern group of the Cape Verde islands, thus suggesting a possible structural control constraining the location of the plutonic intrusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background - Image blurring in Full Field Digital Mammography (FFDM) is reported to be a problem within many UK breast screening units resulting in significant proportion of technical repeats/recalls. Our study investigates monitors of differing pixel resolution, and whether there is a difference in blurring detection between a 2.3 MP technical review monitor and a 5MP standard reporting monitor. Methods - Simulation software was created to induce different magnitudes of blur on 20 artifact free FFDM screening images. 120 blurred and non-blurred images were randomized and displayed on the 2.3 and 5MP monitors; they were reviewed by 28 trained observers. Monitors were calibrated to the DICOM Grayscale Standard Display Function. T-test was used to determine whether significant differences exist in blurring detection between the monitors. Results - The blurring detection rate on the 2.3MP monitor for 0.2, 0.4, 0.6, 0.8 and 1 mm blur was 46, 59, 66, 77and 78% respectively; and on the 5MP monitor 44, 70, 83 , 96 and 98%. All the non-motion images were identified correctly. A statistical difference (p <0.01) in the blurring detection rate between the two monitors was demonstrated. Conclusions - Given the results of this study and knowing that monitors as low as 1 MP are used in clinical practice, we speculate that technical recall/repeat rates because of blurring could be reduced if higher resolution monitors are used for technical review at the time of imaging. Further work is needed to determine monitor minimum specification for visual blurring detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescent protein microscopy imaging is nowadays one of the most important tools in biomedical research. However, the resulting images present a low signal to noise ratio and a time intensity decay due to the photobleaching effect. This phenomenon is a consequence of the decreasing on the radiation emission efficiency of the tagging protein. This occurs because the fluorophore permanently loses its ability to fluoresce, due to photochemical reactions induced by the incident light. The Poisson multiplicative noise that corrupts these images, in addition with its quality degradation due to photobleaching, make long time biological observation processes very difficult. In this paper a denoising algorithm for Poisson data, where the photobleaching effect is explicitly taken into account, is described. The algorithm is designed in a Bayesian framework where the data fidelity term models the Poisson noise generation process as well as the exponential intensity decay caused by the photobleaching. The prior term is conceived with Gibbs priors and log-Euclidean potential functions, suitable to cope with the positivity constrained nature of the parameters to be estimated. Monte Carlo tests with synthetic data are presented to characterize the performance of the algorithm. One example with real data is included to illustrate its application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese pretende contribuir para o estudo e análise dos factores relacionados com as técnicas de aquisição de imagens radiológicas digitais, a qualidade diagnóstica e a gestão da dose de radiação em sistema de radiologia digital. A metodologia encontra-se organizada em duas componentes. A componente observacional, baseada num desenho do estudo de natureza retrospectiva e transversal. Os dados recolhidos a partir de sistemas CR e DR permitiram a avaliação dos parâmetros técnicos de exposição utilizados em radiologia digital, a avaliação da dose absorvida e o índice de exposição no detector. No contexto desta classificação metodológica (retrospectiva e transversal), também foi possível desenvolver estudos da qualidade diagnóstica em sistemas digitais: estudos de observadores a partir de imagens arquivadas no sistema PACS. A componente experimental da tese baseou-se na realização de experiências em fantomas para avaliar a relação entre dose e qualidade de imagem. As experiências efectuadas permitiram caracterizar as propriedades físicas dos sistemas de radiologia digital, através da manipulação das variáveis relacionadas com os parâmetros de exposição e a avaliação da influência destas na dose e na qualidade da imagem. Utilizando um fantoma contraste de detalhe, fantomas antropomórficos e um fantoma de osso animal, foi possível objectivar medidas de quantificação da qualidade diagnóstica e medidas de detectabilidade de objectos. Da investigação efectuada, foi possível salientar algumas conclusões. As medidas quantitativas referentes à performance dos detectores são a base do processo de optimização, permitindo a medição e a determinação dos parâmetros físicos dos sistemas de radiologia digital. Os parâmetros de exposição utilizados na prática clínica mostram que a prática não está em conformidade com o referencial Europeu. Verifica-se a necessidade de avaliar, melhorar e implementar um padrão de referência para o processo de optimização, através de novos referenciais de boa prática ajustados aos sistemas digitais. Os parâmetros de exposição influenciam a dose no paciente, mas a percepção da qualidade de imagem digital não parece afectada com a variação da exposição. Os estudos que se realizaram envolvendo tanto imagens de fantomas como imagens de pacientes mostram que a sobreexposição é um risco potencial em radiologia digital. A avaliação da qualidade diagnóstica das imagens mostrou que com a variação da exposição não se observou degradação substancial da qualidade das imagens quando a redução de dose é efectuada. Propõe-se o estudo e a implementação de novos níveis de referência de diagnóstico ajustados aos sistemas de radiologia digital. Como contributo da tese, é proposto um modelo (STDI) para a optimização de sistemas de radiologia digital.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on a-Si:H-based low-leakage blue-enhanced photodiodes for dual-screen x-ray imaging detectors. Doped nanocrystalline silicon was incorporated in both the n- and p-type regions to reduce absorption losses for light incoming from the top and bottom screens. The photodiode exhibits a dark current density of 900 pA/cm(2) and an external quantum efficiency up to 90% at a reverse bias of 5 V. In the case of illumination through the tailored p-layer, the quantum efficiency of 60% at a 400 nm wavelength is almost double that for the conventional a-Si:H n-i-p photodiode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optically addressed read-write sensor based on two stacked p-i-n heterojunctions is analyzed. The device is a two terminal image sensing structure. The charge packets are injected optically into the p-i-n writer and confined at the illuminated regions changing locally the electrical field profile across the p-i-n reader. An optical scanner is used for charge readout. The design allows a continuous readout without the need for pixel-level patterning. The role of light pattern and scanner wavelengths on the readout parameters is analyzed. The optical-to-electrical transfer characteristics show high quantum efficiency, broad spectral response, and reciprocity between light and image signal. A numerical simulation supports the imaging process. A black and white image is acquired with a resolution around 20 mum showing the potentiality of these devices for imaging applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimized ZnO:Al/a-pin SixC1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed and the read-out parameters improved. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Data reveals that for sensors with wide band gap doped layers an increase on the image signal optimized to the blue is achieved with a dynamic range of two orders of magnitude, a responsivity of 6 mA W-1 and a sensitivity of 17 muW cm(-2) at 530 nm. The main output characteristics such as image responsivity, resolution, linearity and dynamic range were analyzed under reverse, forward and short circuit modes. The results show that the sensor performance can be optimized in short circuit mode. A trade-off between the scan time and the required resolution is needed since the spot size limits the resolution due to the cross-talk between dark and illuminated regions leading to blurring effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous glass/ZnO-Al/p(a-Si:H)/i(a-Si:H)/n(a-Si1-xCx:H)/Al imagers with different n-layer resistivities were produced by plasma enhanced chemical vapour deposition technique (PE-CVD). An image is projected onto the sensing element and leads to spatially confined depletion regions that can be readout by scanning the photodiode with a low-power modulated laser beam. The essence of the scheme is the analog readout, and the absence of semiconductor arrays or electrode potential manipulations to transfer the information coming from the transducer. The influence of the intensity of the optical image projected onto the sensor surface is correlated with the sensor output characteristics (sensitivity, linearity blooming, resolution and signal-to-noise ratio) are analysed for different material compositions (0.5 < x < 1). The results show that the responsivity and the spatial resolution are limited by the conductivity of the doped layers. An enhancement of one order of magnitude in the image intensity signal and on the spatial resolution are achieved at 0.2 mW cm(-2) light flux by decreasing the n-layer conductivity by the same amount. A physical model supported by electrical simulation gives insight into the image-sensing technique used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present results on the optimization of device architectures for colour and imaging applications, using a device with a TCO/pinpi'n/TCO configuration. The effect of the applied voltage on the color selectivity is discussed. Results show that the spectral response curves demonstrate rather good separation between the red, green and blue basic colors. Combining the information obtained under positive and negative applied bias a colour image is acquired without colour filters or pixel architecture. A low level image processing algorithm is used for the colour image reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular. Área de especialização - Ultrassonografia Cardiovascular

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Ressonância Magnética

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromium dioxide (CrO2) has been extensively used in the magnetic recording industry. However, it is its ferromagnetic half-metallic nature that has more recently attracted much attention, primarily for the development of spintronic devices. CrO2 is the only stoichiometric binary oxide theoretically predicted to be fully spin polarized at the Fermi level. It presents a Curie temperature of ∼ 396 K, i.e. well above room temperature, and a magnetic moment of 2 mB per formula unit. However an antiferromagnetic native insulating layer of Cr2O3 is always present on the CrO2 surface which enhances the CrO2 magnetoresistance and might be used as a barrier in magnetic tunnel junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in digital technology led to the development of digital x-ray detectors that are currently in wide use for projection radiography, including Computed Radiography (CR) and Digital Radiography (DR). Digital Imaging Systems for Plain Radiography addresses the current technological methods available to medical imaging professionals to ensure the optimization of the radiological process concerning image quality and reduction of patient exposure. Based on extensive research by the authors and reference to the current literature, the book addresses how exposure parameters influence the diagnostic quality in digital systems, what the current acceptable radiation doses are for useful diagnostic images, and at what level the dose could be reduced to maintain an accurate diagnosis. The book is a valuable resource for both students learning the field and for imaging professionals to apply to their own practice while performing radiological examinations with digital systems.