12 resultados para MIXED-SPECIES PLANTATIONS
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We investigate the thermodynamics and percolation regimes of model binary mixtures of patchy colloidal particles. The particles of each species have three sites of two types, one of which promotes bonding of particles of the same species while the other promotes bonding of different species. We find up to four percolated structures at low temperatures and densities: two gels where only one species percolates, a mixed gel where particles of both species percolate but neither species percolates separately, and a bicontinuous gel where particles of both species percolate separately forming two interconnected networks. The competition between the entropy and the energy of bonding drives the stability of the different percolating structures. Appropriate mixtures exhibit one or more connectivity transitions between the mixed and bicontinuous gels, as the temperature and/or the composition changes.
Resumo:
In this paper, a mixed-integer nonlinear approach is proposed to support decision-making for a hydro power producer, considering a head-dependent hydro chain. The aim is to maximize the profit of the hydro power producer from selling energy into the electric market. As a new contribution to earlier studies, a risk aversion criterion is taken into account, as well as head-dependency. The volatility of the expected profit is limited through the conditional value-at-risk (CVaR). The proposed approach has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to eat her studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement.
Resumo:
This paper is on the problem of short-term hydro, scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach.
Resumo:
In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Aflatoxins were first isolated about 40 years ago afier outbreaks of disease and death in turkeys and cancer in rainbow trout fed with rations formulated from peanut and cottonseed meals. These toxins are secondary metabolites produced under certain conditions of temperature, p14 and humidity predominantiy by Aspergilius flavus and Aspergilius parasiticus fungi species. Among 18 different types of aflatoxins identified, major members are aflatoxin B1, B2, G1 and G2. Aflatoxin B1 (AFB1) is normaily predominant in cultures as well as in food products. AFB1 was shown to be genotoxic and a potent hepatocarcinogen. This mycotoxin is metabolized by the mixed function oxidase system to a number of hydroxylated metabolites including the 8,9-epoxide. The latter is considered to be the ultimate carcinogen that reacts with cellular deoxyribonucleic acid (DNA) and proteins to form covalent adducts.
Resumo:
The new hexanuclear mixed-valence vanadium complex [V3O3(OEt)(ashz)(2)(mu-OEt)](2) (1) with an N,O-donor ligand is reported. It acts as a highly efficient catalyst toward alkane oxidations by aqueous H2O2. Remarkably, high turnover numbers up to 25000 with product yields of up to 27% (based on alkane) stand for one of the most active systems for such reactions.
Resumo:
Purpose: Samples from different environmental sources were screened for the presence of Aspergillus, and the distribution of the different species-complexes was determined in order to understand differences among that distribution in the several environmental sources and which of these species complexes are present in specific environmental settings. Methods: Four distinct environments (beaches, poultries, swineries and hospital) were studied and analyzed for which Aspergillus complexes were present in each setting. After plate incubation and colony isolation, morphological identification was done using macro- and microscopic characteristics. The universal fungal primers ITS1 and ITS4 were used to amplify DNA from all Aspergillus isolates, which was sequenced for identification to species complex level. SPSS v15.0 for Windows was used to perform the statistical analysis. Results: Thirty-nine isolates of Aspergillus were recovered from both the sand beach and poultries, 31 isolates from swineries, and 80 isolates from hospital environments, for a total 189 isolates. Eleven species complexes were found total. Isolates belonging to the Aspergillus Versicolores species-complex were the most frequently found (23.8%), followed by Flavi (18.0%), Fumigati (15.3%) and Nigri (13.2%) complexes. A significant association was found between the different environmental sources and the distribution of the several species-complexes (p<0.001); the hospital environment had a greater variability of species-complexes than other environmental locations (10 in hospital environment, against nine in swine, eight in poultries and seven in sand beach). Isolates belonging to Nidulantes complex were detected only in the hospital environment, whereas the other complexes were identified in more than one setting. Conclusion: Because different Aspergillus complexes have different susceptibilities to antifungal drugs, and different abilities in producing mycotoxins, knowledge of the species-complex epidemiology for each setting may allow preventive or corrective measures to be taken toward decreasing professional workers or patient exposure to those agents.
Resumo:
The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A new method is proposed to control delayed transitions towards extinction in single population theoretical models with discrete time undergoing saddle-node bifurcations. The control method takes advantage of the delaying properties of the saddle remnant arising after the bifurcation, and allows to sustain populations indefinitely. Our method, which is shown to work for deterministic and stochastic systems, could generally be applied to avoid transitions tied to one-dimensional maps after saddle-node bifurcations.
Resumo:
This work provides an assessment of layerwise mixed models using least-squares formulation for the coupled electromechanical static analysis of multilayered plates. In agreement with three-dimensional (3D) exact solutions, due to compatibility and equilibrium conditions at the layers interfaces, certain mechanical and electrical variables must fulfill interlaminar C-0 continuity, namely: displacements, in-plane strains, transverse stresses, electric potential, in-plane electric field components and transverse electric displacement (if no potential is imposed between layers). Hence, two layerwise mixed least-squares models are here investigated, with two different sets of chosen independent variables: Model A, developed earlier, fulfills a priori the interiaminar C-0 continuity of all those aforementioned variables, taken as independent variables; Model B, here newly developed, rather reduces the number of independent variables, but also fulfills a priori the interlaminar C-0 continuity of displacements, transverse stresses, electric potential and transverse electric displacement, taken as independent variables. The predictive capabilities of both models are assessed by comparison with 3D exact solutions, considering multilayered piezoelectric composite plates of different aspect ratios, under an applied transverse load or surface potential. It is shown that both models are able to predict an accurate quasi-3D description of the static electromechanical analysis of multilayered plates for all aspect ratios.
Resumo:
Binary operations on commutative Jordan algebras, CJA, can be used to study interactions between sets of factors belonging to a pair of models in which one nests the other. It should be noted that from two CJA we can, through these binary operations, build CJA. So when we nest the treatments from one model in each treatment of another model, we can study the interactions between sets of factors of the first and the second models.