11 resultados para Ideal observer theory
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
O trabalho que se apresenta incide sobre o estudo aerodinâmico das pás de uma turbina eólica de pequeno porte, com vista à simplificação geométrica, de forma a que estas sejam baratas e de fácil concepção. A teoria da quantidade de movimento do elemento de pá (BEMT), que é o modelo de referência para o projecto e análise aerodinâmica das pás das turbinas eólicas, foi utilizada neste trabalho de forma a projectar e analisar aerodinamicamente as pás da turbina. Sendo assim, desenvolveu-se um programa computacional em MATLAB, denominado de “Turbina”, de forma a implementar a teoria BEM. Introduzindo os dados dos parâmetros de projecto no programa (potência requerida, o número de pás, velocidade do vento, a TSR e o tipo de perfil alar), obtêm-se os parâmetros geométricos das pás (distribuição da corda ao longo da envergadura, o raio da pá e a distribuição da torção da pá), os parâmetros aerodinâmicos e de desempenho. Uma pá ideal foi calculada e de seguida foi modificada de forma a obter-se uma pá simples e menos carregada aerodinamicamente. Introduzidas as modificações na geometria da pá ideal, obtiveram-se duas configurações distintas. Uma configuração linear, onde a distribuição da corda e do ângulo de torção se tornam lineares, e outra configuração bi-linear, onde a distribuição da corda continua linear mas o ângulo de torção se torna bi-linear, isto é, a pá é composta por dois troços onde cada troço apresenta uma distribuição linear do ângulo de torção geométrica. As conclusões demonstram que a configuração bi-linear é uma boa alternativa a configuração ideal, apresentando uma redução do desempenho do rotor de 2.8% para um aumento do raio da pá em 1.41%, para se obter a mesma potência da configuração ideal. A análise aos perfis alares, utilizados neste trabalho, foi efectuada a partir dos programas comerciais ICEM e FLUENT. De forma a automatizar a análise de CFD, três programas foram desenvolvidos utilizando a linguagem de programação “C”. Os programas são denominados de “Malha2D”, “Calcula_Coeficientes” e “Plot_Graficos”. Finalmente, um estudo paramétrico foi feito de forma a avaliar a influências das variáveis de projecto no desempenho geral da turbina.
Resumo:
Although stock prices fluctuate, the variations are relatively small and are frequently assumed to be normal distributed on a large time scale. But sometimes these fluctuations can become determinant, especially when unforeseen large drops in asset prices are observed that could result in huge losses or even in market crashes. The evidence shows that these events happen far more often than would be expected under the generalized assumption of normal distributed financial returns. Thus it is crucial to properly model the distribution tails so as to be able to predict the frequency and magnitude of extreme stock price returns. In this paper we follow the approach suggested by McNeil and Frey (2000) and combine the GARCH-type models with the Extreme Value Theory (EVT) to estimate the tails of three financial index returns DJI,FTSE 100 and NIKKEI 225 representing three important financial areas in the world. Our results indicate that EVT-based conditional quantile estimates are much more accurate than those from conventional AR-GARCH models assuming normal or Student’s t-distribution innovations when doing out-of-sample estimation (within the insample estimation, this is so for the right tail of the distribution of returns).
Resumo:
We use Wertheim's first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f(B) patches of type B). A patch of type alpha = {A, B} can bond to a patch of type beta = {A, B} in a volume nu(alpha beta), thereby decreasing the internal energy by epsilon(alpha beta). We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (epsilon(AB) < epsilon(AA)/2) but entropically favoured (nu(AB) >> nu(alpha alpha)), and BB bonds, or X-junctions, are energetically favoured (epsilon(BB) > 0). We show that, for low values of epsilon(BB)/epsilon(AA), the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X-and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of epsilon(BB)/epsilon(AA). The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures.
Resumo:
Pre-operative diffusion tensor (DT) tractography is currently employed in our institutions. We use it to predict the course of the facial nerve (FN) in the vicinity of vestibular schwannomas (VS) of the cerebellopontine angle (CPA). In this study we were interested to assess the inter-observer reproducibility of this method. Two Neuroradiologists (PMGP and TT) determined independently the location of the FN by tractography and compared the results with in-vivo findings of microsurgery of VS.
Resumo:
The development of children's school achievements in mathematics is one of the most important aims of education in Poland. The results of research concerning monitoring of school achievements in maths is not optimistic. We can observe low levels of children’s understanding of the merits of maths, self-developed strategies in solving problems and practical usage of maths skills. This article frames the discussion of this problem in its psychological and didactic context and analyses the causes as they relate to school practice in teaching maths
Resumo:
We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.
Resumo:
We present a study of the effects of nanoconfinement on a system of hard Gaussian overlap particles interacting with planar substrates through the hard-needle-wall potential, extending earlier work by two of us [D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001)]. Here, we consider the case of hybrid films, where one of the substrates induces strongly homeotropic anchoring, while the other favors either weakly homeotropic or planar anchoring. These systems are investigated using both Monte Carlo simulation and density-functional theory, the latter implemented at the level of Onsager's second-virial approximation with Parsons-Lee rescaling. The orientational structure is found to change either continuously or discontinuously depending on substrate separation, in agreement with earlier predictions by others. The theory is seen to perform well in spite of its simplicity, predicting the positional and orientational structure seen in simulations even for small particle elongations.
Resumo:
We show that a self-generated set of combinatorial games, S. may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question "Is there a set which will give a non-distributive but modular lattice?" appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.
Resumo:
We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by epsilon(AA) and by epsilon(AB) = r epsilon(AA), respectively. The angle theta between the 2 A-patches on each particle is fixed at 601, 90 degrees or 120 degrees. For values of r below 1/2 and above a threshold r(th)(theta) the models exhibit a phase diagram with two critical points. Both theory and simulation predict that rth increases when theta decreases. We show that the mechanism that prevents phase separation for models with decreasing values of theta is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings ( loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of theta, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.