11 resultados para INTRACELLULAR SOLUTES
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Solution enthalpies of 1-bromoadamantane, 1-adamantanol, and 2-adamantanone in a large set of protic and aprotic solvents are reported at 298.15 K. Solvent effects on the solution processes of these solutes are analyzed in terms of a modified TAKA equation, involving delta(cav) h (s) as the cavity term. The nature and magnitude of the major interactions which influence these processes are assessed and discussed in terms of the solutes' characteristics. New insights on the solution processes under scrutiny are presented.
Resumo:
Although vaccination is still the most cost-effective strategy for tuberculosis control, there is an urgent need for an improved vaccine. Current BCG vaccine lacks efficacy in preventing adult pulmonary tuberculosis, the most prevalent form of the disease. Targeting nasal mucosa, Mycobacterium tuberculosis infection site, will allow a simpler, less prone to risk of infection and more effective immunization against disease. Due to its biodegradable, immunogenic and mucoadhesive properties, chitosan particulate delivery systems can act both as carrier and as adjuvant, improving the elicited immune response. In this study, BCG was encapsulated in alginate and chitosan microparticles, via a mild ionotropic gelation procedure with sodium tripolyphosphate as a counterion. The particulate system developed shows effective modulation of BCG surface physicochemical properties, suitable for mucosal immunization. Intracellular uptake was confirmed by effective transfection of human macrophage cell lines.
Resumo:
Immunisation against M. tuberculosis with current available BCG vaccine lacks efficacy in preventing adult pulmonary tuberculosis. Targeting nasal mucosa is an attractive option for a more effective immunization. The delivery of BCG via the intranasal route involves overcoming barriers such as crossing the physical barrier imposed by the mucus layer and ciliar remotion, cellular uptake and intracellular trafficking by antigen presenting cells. Due to its biodegradable, immunogenic and mucoadhesive properties, chitosan particulate delivery systems can act both as vaccine carrier and adjuvant, improving the elicited immune response. In this study, different combinations of Chitosan/Alginate/TPP microparticles with BCG were produced as vaccine systems. The developed microparticle system successfully modulates BCG surface physicochemical properties and promotes effective intracellular uptake by human macrophage cell lines Preliminary immune responses were evaluated after s.c. and intranasal immunisation of BALB/c mice. BCG vaccination successfully stimulated the segregation of IgG2a and IgG1, where intranasal immunisation with chitosan/alginate particulate system efficiently elicited a more equilibrated cellular/humoral immune response.
Resumo:
Hyperhomocysteinemia (HHcy) is a risk factor for vascular disease, but the underlying mechanisms remain incompletely defined. Reduced bioavailability of nitric oxide (NO) is a principal manifestation of underlying endothelial dysfunction, which is an initial event in vascular disease. Inhibition of cellular methylation reactions by S-adenosylhomocysteine (AdoHcy), which accumulates during HHcy, has been suggested to contribute to vascular dysfunction. However, thus far, the effect of intracellular AdoHcy accumulation on NO bioavailability has not yet been fully substantiated by experimental evidence. The present study was carried out to evaluate whether disturbances in cellular methylation status affect NO production by cultured human endothelial cells. Here, we show that a hypomethylating environment, induced by the accumulation of AdoHcy, impairs NO production. Consistent with this finding, we observed decreased eNOS expression and activity, but, by contrast, enhanced NOS3 transcription. Taken together, our data support the existence of regulatory post-transcriptional mechanisms modulated by cellular methylation potential leading to impaired NO production by cultured human endothelial cells. As such, our conclusions may have implications for the HHcy-mediated reductions in NO bioavailability and endothelial dysfunction.
Resumo:
This paper addresses the investigation of the fractionation of saccharide mixtures and saccharide mixtures with calcium using ultrafiltration (UF) and nanofiltration (NF). A set of cellulose acetate membranes covered a wide range of molecular weight cut-off (MWCO) ranging from 250 to 46,000 Da and the total feed concentration of saccharides mixtures varied from 1550 to 4700 ppm with the ratio of the two saccharides-solutes (glucose to raffinose) being kept constant at the value of 1.8. The evolution pattern of the saccharide concentration ratio in the UF/NF permeate streams displayed a dependence on the membrane MWCO, on the total sugar concentration and on the presence of calcium ions. For the highest total sugar content, the membranes with MWCO from 2000 to 7000 Da showed saccharide fractionation capability that was enhanced in the presence of calcium. The Steric Pore Flow Model was used to predict individual solute permeation behaviours and to assess the deviations to steric hindered transport of the solutes in multi-component saccharide solutions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cork processing involves a boiling step to make the cork softer, which consumes a high volume of water and generates a wastewater with a high organic content, rich in tannins. An assessment of the final wastewater characteristics and of the boiling water composition along the boiling process was performed. The parameters studied were pH, color, total organic carbon (TOC), chemical and biochemical oxygen demands (COD, BOD5, BOD20), total suspended solids (TSS), total phenols and tannins (TP, TT). It was observed that the water solutes extraction power is significantly reduced for higher quantities of cork processed. Valid relationships between parameters were established not only envisaging wastewater characterization but also to provide an important tool for wastewater monitoring and for process control/optimization. Boiling water biodegradability presented decreasing values with the increase of cork processed and for the final wastewater its value is always lower than 0.5, indicating that these wastewaters are very difficult to treat by biological processes. The biodegradability was associated with the increase of tannin content that can rise up to 0.7 g/L. These compounds can be used by other industries when concentrated and the clarified wastewater can be reused, which is a potential asset in this wastewater treatment.
Resumo:
The aim of this work is to study the risk of obesity posed by two genetic factors: haptoglobin phenotype and acid phosphatase phenotype, one enzymatic activity: acid phosphatase activity (ACP1), age and gender. Haptoglobin (Hp) is a protein of the immune system, and three phenotypes of Hp are found in humans: Hp1-1, Hp2-1, and Hp2-2. This protein is associated with a susceptibility to common pathological conditions, such as obesity. ACP1 is an intracellular enzyme The phenotypes of ACP1 (AA, AB, AC, BB, BC, CC) are also considered. We took a sample of 127 subjects with complete data from 714 registers. Since we intend to identify risk factors for obesity, an ordinal regression model is adjusted, using the Body Mass Index, BMI, to define weight categories. Haptoglobin phenotype, enzymatic activity of ACP1, acid phosphatase phenotype, age and gender are considered as regressor variables. We found three factors associated with an increased risk of obesity: phenotype Hp2-1 of haptoglobin (estimated odds ratio OR 11.54), phenotype AA of acid phosphatase (OR 33.788) and age (OR 1.39). The interaction between phenotype Hp2-1 and phenotype AC is associated with a decreased risk of obesity (OR 0.032); The interaction between phenotype AA and ACP1 activity is associated with a decreased risk of obesity (OR 0.954).
Resumo:
Background: Protein-energy wasting (PEW), associated with inflammation and overhydration, is common in haemodialysis (HD) patients and is associated with high morbidity and mortality. Objective: Assess the relationship between nutritional status, markers of inflammation and body composition through bioimpedance spectroscopy (BIS) in HD patients. Methods: This observational, cross-sectional, single centre study, carried out in an HD centre in Forte da Casa (Portugal), involved 75 patients on an HD programme. In all participating patients, the following laboratory tests were conducted: haemoglobin, albumin, C-reactive protein (CRP) and 25-hydroxyvitamin D3 [25(OH)D3]. The body mass index of all patients was calculated and a modified version of subjective global assessment (SGA) was produced for patients on dialysis. Intracellular water (ICW) and extracellular water (ECW) were measured by BIS (Body Composition Monitor®, Fresenius Medical Care®) after the HD session. In statistical analysis, Spearman’s correlation was used for the univariate analysis and linear regression for the multivariate analysis (SPSS 14.0). A P value of <.05 was considered statistically significant. Results: PEW, inversely assessed through the ICW/body weight (BW) ratio, was positively related to age (P<.001), presence of diabetes (P=.004), BMI (P=.01) and CRP (P=.008) and negatively related to albumin (p=.006) and 25(OH)D3 (P=.007). Overhydration, assessed directly through the ECW/BW ratio, was positively related with CRP (P=.009) and SGA (P=.03), and negatively with 25(OH)D3 (P=.006) and BMI (P=.01). In multivariate analysis, PEW was associated with older age (P<.001), the presence of diabetes (P=.003), lower 25(OH)D3 (P=.008), higher CRP (P=.001) and lower albumin levels (P=.004). Over-hydration was associated with higher CRP (P=.001) and lower levels of 25(OH)D3 (P=.003). Conclusions: Taking these results into account, the ICW/BW and ECW/BW ratios, assessed with BIS, have proven to be good markers of the nutritional and inflammatory status of HD patients. BIS may be a useful tool for regularly assessing the nutritional and hydration status in these patients and may allow nutritional advice to be improved and adjusted.
Resumo:
Agência Financiadora: FCT - PTDC/QUI/72656/2006 ; SFRH/BPD/27454/2006; SFRH/BPD/44082/2008; SFRH/BPD/41138/2007
Resumo:
Background: Mushroom polysaccharides play an important role in functional foods because they exhibit biological modulator properties such as antitumour, antiviral and antibacterial activities. The present study involved the production, purification and characterisation of intracellular and extracellular free and protein-bound polysaccharides from Pleurotus ostreatus and the investigation of their growth-inhibitory effect on human carcinoma cell lines. Results: Several fermentation parameters were obtained: batch polysaccharide productivities of 0.013 +/- 8.12 x 10-5 and 0.037 +/- 0.0005 g L-1 day-1 for intracellular and extracellular polysaccharides respectively, a maximum biomass concentration of 9.35 +/- 0.18 g L-1, Pmax = 0.935 +/- 0.018 g L-1 day-1, µmax = 0.218 +/- 0.02 day-1, YEP/X = 0.040 +/- 0.0015 g g-1 and YIP/X = 0.014 +/- 0.0003 g g-1. Some polysaccharides exhibited superoxide dismutase (SOD)-like activity of 50-200 units. Fourier transform infrared analysis of the polysaccharides revealed absorption bands characteristic of such biological macromolecules. Cytotoxicity assays showed that both intracellular and extracellular polysaccharides exhibited antitumour activity towards several tested human carcinoma cell lines in a dose-dependent manner. Conclusion - The polysaccharides of P. ostreatus exhibited high SOD-like activity, which strongly supports their biological effect on tumour cell lines. The extracellular polysaccharides presented the highest antitumour activity towards the RL95 carcinoma cell line and should be further investigated as an antitumour agent.
Resumo:
Extracellular-(E-PPS) and intracellular-protein-polysaccharides (I-PPS) complexes were produced by Trametes versicolor in submerged cultures with different carbon sources. The highest extracellular-(EPS) and intracellular-polysaccharide (IPS) concentration in the complexes was obtained with tomato pomace culture. DPPH radical scavenging for E-PPS and I-PPS produced by liter of culture was equivallent to 2.115 +/- A 0.227 and 1.374 +/- A 0.364 g of ascorbic acid, respectively. These complexes showed a protector effect in the oxidation of erythrocyte membranes and had ability to inhibit the hemolysis and methemoglobin synthesis in stressed erythrocytes. These results suggest that extracellular- and intracellular- polysaccharides produced are important bioactive compounds with medicinal potential.