16 resultados para HTS tube

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typical distribution of exposure parameters in plain radiography is unknown in Portugal. This study aims to identify exposure parameters that are being used in plain radiography in the Lisbon area and to compare the collected data with European references [Commission of European Communities (CEC) guidelines]. The results show that in four examinations (skull, chest, lumbar spine and pelvis), there is a strong tendency of using exposure times above the European recommendation. The X-ray tube potential values (in kV) are below the recommended values from CEC guidelines. This study shows that at a local level (Lisbon region), radiographic practice does not comply with CEC guidelines concerning exposure techniques. Further national/local studies are recommended with the objective to improve exposure optimisation and technical procedures in plain radiography. This study also suggests the need to establish national/local diagnostic reference levels and to proceed to effective measurements for exposure optimisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Em Portugal não são conhecidos estudos publicados que identifiquem com clareza as distribuições típicas dos valores associados aos parâmetros técnicos de exposição utilizados nos exames radiológicos mais comuns. Este estudo tem como objectivos identificar os parâmetros técnicos utilizados em exames radiológicos convencionais na região de Lisboa e comparar os dados com a referência europeia CEC. Os resultados obtidos evidenciam que nas projecções estudadas existe uma predominância para o uso de termos de exposição acima da recomendação CEC e de valores de potencial da ampola (kV) abaixo da recomendação. Esta investigação sugere a necessidade de fixar os NRD nacionais, e/ou locais, e efectuar as respectivas medições, dado que a optimização da exposição é um mecanismo de controlo fundamental para limitar as exposições desnecessárias dos pacientes às radiações ionizantes. Conclui-se que a nível local (região da Grande Lisboa) existe um desconhecimento da prática radiológica enquadrada nos referenciais europeus de boa prática radiológica. Desconhecendo-se a situação a nível nacional, sugerem-se estudos no sentido de identificar os padrões de prática radiológica a nível do País e de promover a optimização dos procedimentos em radiologia convencional. ABSTRACT - Typical distribution of exposure parameters in plain radiography is unknown in Portugal. This study aims to identify exposure parameters that are being used in plain radiography in Lisbon area and to compare collected data with European references (CEC guidelines). Results show that in the four anatomic regions there is a strong tendency of using exposure times above the European recommendation. We also found that x-ray tube potential values (kV) are below the recommended values from CEC guidelines. This study shows that at a local level (Lisbon region) radiographic practice does not fit with CEC guidelines concerning exposure techniques. We suggest continuing national/local studies with the objective to improve exposure optimization and technical procedures in plain radiography. This study also suggests the need to establish national/local DRL’s and to proceed to effective measurements for exposure optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdução – A monitorização da exposição ocupacional a doses de radiação ionizante pode ser complementada por dosímetros eletrónicos individuais que permitem uma leitura direta da dose de radiação recebida. Dada a dependência energética e de débito de dose já reportada para estes dosímetros, este trabalho pretende determinar a linearidade da resposta de um dosímetro eletrónico individual e estudar o comportamento da sua resposta em função da energia de radiação e do débito de dose. Metodologia – Para estudar a dependência da energia da radiação do dosímetro eletrónico pessoal Vertec Bleeper Sv procedeu‑se à sua irradiação com um equivalente de dose individual, Hp(10), de 500 μSv de radiação gama do Cobalto – 60 (60C) e Césio – 137 (137Cs) e das qualidades de radiação X da série Narrow (N): N‑30, N‑40, N‑60, N‑80, N‑100 e N‑120. Para investigar a dependência da resposta em função do débito de dose aplicaram‑se à ampola de raios X as intensidades de corrente elétrica de 1 mA, 5 mA, 10 mA, 15 mA e 20 mA. Resultados – Não existe uma relação entre a resposta do detetor e a energia de radiação a que este é exposto. Ocorre uma subestimação superior a 50% na grandeza medida para energias inferiores a 33 keV, mas ostenta uma medida relativamente linear da grandeza Hp(10) para doses inferiores a 100 μSv. Também se constata que, à medida que o débito de dose aumenta, existe uma diminuição na resposta do dosímetro. O menor decréscimo na resposta deste dosímetro eletrónico individual dá‑se para as qualidades de radiação N‑30 (1,1%), N‑40 (4,1%) e N‑120 (20,0%). Conclusão – Verifica‑se que a resposta do dosímetro individual Vertec Bleeper Sv depende fortemente da energia da radiação e do débito de dose. ABSTRACT: Introduction – The measurement of occupational exposure to radiation doses can be completed with an electronic personal dosemeter that allows a direct reading and alarm function of the received radiation dose. Due to the energy and dose rate dependence already reported for this type of dosemeter, it is intended, with this work, to determine the response linearity of an Electronic Personal Dosemeter and to study its response behavior to the dose rate and radiation energy. Methodology – The electronic personal dosemeter Vertec Bleeper Sv energy dependency was evaluated by its irradiation with 500 μSv from the radionuclides Cobalt – 60 (60C) and Cesium – 137 (137Cs) as well as by the radiation qualities of the Narrow (N) series: N‑30, N‑40, N‑60, N‑80, N‑100 e N‑120. To investigate the dose rate dependency, the intensities of electric current of 1 mA, 5 mA, 10 mA, 15 mA and 20 mA were applied to the X‑ray tube. Results – There is no relationship between the response of the detector and the radiation energy. For energies below 33 keV there is an underestimation over 50% of the radiation dose measured but the detector presents a linear response for energies under 100 μSv. A dependency on the dose rate is perceived since as the dose rate increases, the response of the individual monitor decreases. There is a smaller decrease for the radiation qualities of N‑30 (1.1%), N‑40 (4.1%) and N‑120 (20.0%). Conclusion – It is concluded that there is a strong dependence of radiation energy and dose rate on the response of an electronic personal dosemeter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - This study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and effective dose (E) for pelvis using automatic exposure control (AEC) and non-AEC in a Computed Radiography (CR) system. Methods and materials - To determine the effects of using AEC and non-AEC by applying the 10 kVp rule in two experiments using an anthropomorphic pelvis phantom. Images were acquired using 10 kVp increments (60–120 kVp) for both experiments. The first experiment, based on seven AEC combinations, produced 49 images. The mean mAs from each kVp increment were used as a baseline for the second experiment producing 35 images. A total of 84 images were produced and a panel of 5 experienced observers participated for the image scoring using the two alternative forced choice (2AFC) visual grading software. PCXMC software was used to estimate E. Results - A decrease in perceptual image quality as the kVp increases was observed both in non-AEC and AEC experiments, however no significant statistical differences (p > 0.05) were found. Image quality scores from all observers at 10 kVp increments for all mAs values using non-AEC mode demonstrates a better score up to 90 kVp. E results show a statistically significant decrease (p = 0.000) on the 75th quartile from 0.37 mSv at 60 kVp to 0.13 mSv at 120 kVp when applying the 10 kVp rule in non-AEC mode. Conclusion - Using the 10 kVp rule, no significant reduction in perceptual image quality is observed when increasing kVp whilst a marked and significant E reduction is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim - A quantative primary study to determine whether increasing source to image distance (SID), with and without the use of automatic exposure control (AEC) for antero-posterior (AP) pelvis imaging, reduces dose whilst still producing an image of diagnostic quality. Methods - Using a computed radiography (CR) system, an anthropomorphic pelvic phantom was positioned for an AP examination using the table bucky. SID was initially set at 110 cm, with tube potential set at a constant 75 kVp, with two outer chambers selected and a fine focal spot of 0.6 mm. SID was then varied from 90 cm to 140 cm with two exposures made at each 5 cm interval, one using the AEC and another with a constant 16 mAs derived from the initial exposure. Effective dose (E) and entrance surface dose (ESD) were calculated for each acquisition. Seven experienced observers blindly graded image quality using a 5-point Likert scale and 2 Alternative Forced Choice software. Signal-to-Noise Ratio (SNR) was calculated for comparison. For each acquisition, femoral head diameter was also measured for magnification indication. Results - Results demonstrated that when increasing SID from 110 cm to 140 cm, both E and ESD reduced by 3.7% and 17.3% respectively when using AEC and 50.13% and 41.79% respectively, when the constant mAs was used. No significant statistical (T-test) difference (p = 0.967) between image quality was detected when increasing SID, with an intra-observer correlation of 0.77 (95% confidence level). SNR reduced slightly for both AEC (38%) and no AEC (36%) with increasing SID. Conclusion - For CR, increasing SID significantly reduces both E and ESD for AP pelvis imaging without adversely affecting image quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Ramo de especialização: Imagem Digital com Radiação X

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - Pelvis and hip radiography are consistently found to be amongst the highest contributors to the collective effective dose (E) in all ten DOSE DATAMED countries in Europe, representing 2.8 to 9.4% of total collective dose (S) in the TOP 20 exams list. The level of image quality should provide all the diagnostic information in order not to jeopardise the diagnosis, but being able to provide the needed clinical information with the minimum dose. A recent study suggests further research to determine whether the “10 kVp rule” would have value for a range of examinations using Computed Radiography (CR) systems. As a “rule of thumb” increasing the kVp by 10 whilst halving the mAs is suggested to give a similar perceptual image quality when compared to the original exposure factors. Aims - In light of the 10kVp rule, this study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and E for pelvis imaging using automatic exposure control (AEC) and non-AEC in a Computed Radiography (CR) system. Research questions - Does the 10kVp rule works for the pelvis in relation to image quality in a CR system? Does the image quality differs when the AEC is used instead of manual mode using the 10kVp rule and how this impacts on E?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronary artery disease (CAD) is currently one of the most prevalent diseases in the world population and calcium deposits in coronary arteries are one direct risk factor. These can be assessed by the calcium score (CS) application, available via a computed tomography (CT) scan, which gives an accurate indication of the development of the disease. However, the ionising radiation applied to patients is high. This study aimed to optimise the protocol acquisition in order to reduce the radiation dose and explain the flow of procedures to quantify CAD. The main differences in the clinical results, when automated or semiautomated post-processing is used, will be shown, and the epidemiology, imaging, risk factors and prognosis of the disease described. The software steps and the values that allow the risk of developingCADto be predicted will be presented. A64-row multidetector CT scan with dual source and two phantoms (pig hearts) were used to demonstrate the advantages and disadvantages of the Agatston method. The tube energy was balanced. Two measurements were obtained in each of the three experimental protocols (64, 128, 256 mAs). Considerable changes appeared between the values of CS relating to the protocol variation. The predefined standard protocol provided the lowest dose of radiation (0.43 mGy). This study found that the variation in the radiation dose between protocols, taking into consideration the dose control systems attached to the CT equipment and image quality, was not sufficient to justify changing the default protocol provided by the manufacturer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of X-rays was undoubtedly one of the greatest stimulus for improving the efficiency in the provision of healthcare services. The ability to view, non-invasively, inside the human body has greatly facilitated the work of professionals in diagnosis of diseases. The exclusive focus on image quality (IQ), without understanding how they are obtained, affect negatively the efficiency in diagnostic radiology. The equilibrium between the benefits and the risks are often forgotten. It is necessary to adopt optimization strategies to maximize the benefits (image quality) and minimize risk (dose to the patient) in radiological facilities. In radiology, the implementation of optimization strategies involves an understanding of images acquisition process. When a radiographer adopts a certain value of a parameter (tube potential [kVp], tube current-exposure time product [mAs] or additional filtration), it is essential to know its meaning and impact of their variation in dose and image quality. Without this, any optimization strategy will be a failure. Worldwide, data show that use of x-rays has been increasingly frequent. In Cabo Verde, we note an effort by healthcare institutions (e.g. Ministry of Health) in equipping radiological facilities and the recent installation of a telemedicine system requires purchase of new radiological equipment. In addition, the transition from screen-films to digital systems is characterized by a raise in patient exposure. Given that this transition is slower in less developed countries, as is the case of Cabo Verde, the need to adopt optimization strategies becomes increasingly necessary. This study was conducted as an attempt to answer that need. Although this work is about objective evaluation of image quality, and in medical practice the evaluation is usually subjective (visual evaluation of images by radiographer / radiologist), studies reported a correlation between these two types of evaluation (objective and subjective) [5-7] which accredits for conducting such studies. The purpose of this study is to evaluate the effect of exposure parameters (kVp and mAs) when using additional Cooper (Cu) filtration in dose and image quality in a Computed Radiography system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article reports density measurements of dipropyl (DPA), dibutyl (DBA) and bis(2-ethylhexyl) (DEHA) adipates, using a vibrating U-tube densimeter, model DMA HP, from Anton Paar GmbH. The measurements were performed in the temperature range (293 to 373) K and at pressures up to about 68 MPa, except for DPA for which the upper limits were 363 K and 65 MPa, respectively. The density data for each liquid was correlated with the temperature and pressure using a modified Tait equation. The expanded uncertainty of the present density results is estimated as 0.2% at a 95% confidence level. No literature density data at pressures higher than 0.1 MPa could be found. DEHA literature data at atmospheric pressure agree with the correlation of the present measurements, in the corresponding temperature range, within +/- 0.11%. The isothermal compressibility and the isobaric thermal expansion were calculated by differentiation of the modified Tait correlation equation. These two parameters were also calculated for dimethyl adipate (DMA), from density data reported in a previous work. The uncertainties of isothermal compressibility and the isobaric thermal expansion are estimated to be less than +/- 1.7% and +/- 1.1%, respectively, at a 95% confidence level. Literature data of isothermal compressibility and isobaric thermal expansivity for DMA have an agreement within +/- 1% and +/- 2.4%, respectively, with results calculated in this work. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Part I of the present work we describe the viscosity measurements performed on tris(2-ethylhexyl) trimellitate or 1,2,4-benzenetricarboxylic acid, tris(2-ethylhexyl) ester (TOTM) up to 65 MPa and at six temperatures from (303 to 373)K, using a new vibrating-wire instrument. The main aim is to contribute to the proposal of that liquid as a potential reference fluid for high viscosity, high pressure and high temperature. The present Part II is dedicated to report the density measurements of TOTM necessary, not only to compute the viscosity data presented in Part I, but also as complementary data for the mentioned proposal. The present density measurements were obtained using a vibrating U-tube densimeter, model DMA HP, using model DMA5000 as a reading unit, both instruments from Anton Paar GmbH. The measurements were performed along five isotherms from (293 to 373)K and at eleven different pressures up to 68 MPa. As far as the authors are aware, the viscosity and density results are the first, above atmospheric pressure, to be published for TOTM. Due to TOTM's high viscosity, its density data were corrected for the viscosity effect on the U-tube density measurements. This effect was estimated using two Newtonian viscosity standard liquids, 20 AW and 200 GW. The density data were correlated with temperature and pressure using a modified Tait equation. The expanded uncertainty of the present density results is estimated as +/- 0.2% at a 95% confidence level. Those results were correlated with temperature and pressure by a modified Tait equation, with deviations within +/- 0.25%. Furthermore, the isothermal compressibility, K-T, and the isobaric thermal expansivity, alpha(p), were obtained by derivation of the modified Tait equation used for correlating the density data. The corresponding uncertainties, at a 95% confidence level, are estimated to be less than +/- 1.5% and +/- 1.2%, respectively. No isobaric thermal expansivity and isothermal compressibility for TOTM were found in the literature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review aims to identify strategies to optimise radiography practice using digital technologies, for full spine studies on paediatrics focusing particularly on methods used to diagnose and measure severity of spinal curvatures. The literature search was performed on different databases (PubMed, Google Scholar and ScienceDirect) and relevant websites (e.g., American College of Radiology and International Commission on Radiological Protection) to identify guidelines and recent studies focused on dose optimisation in paediatrics using digital technologies. Plain radiography was identified as the most accurate method. The American College of Radiology (ACR) and European Commission (EC) provided two guidelines that were identified as the most relevant to the subject. The ACR guidelines were updated in 2014; however these guidelines do not provide detailed guidance on technical exposure parameters. The EC guidelines are more complete but are dedicated to screen film systems. Other studies provided reviews on the several exposure parameters that should be included for optimisation, such as tube current, tube voltage and source-to-image distance; however, only explored few of these parameters and not all of them together. One publication explored all parameters together but this was for adults only. Due to lack of literature on exposure parameters for paediatrics, more research is required to guide and harmonise practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and effective dose for pelvis using automatic exposure control (AEC) and non-AEC in a computed radiography (CR) system. Methods and Materials: To determine the effects of using AEC and non-AEC by applying the 10 kVp rule in two experiments using an anthropomorphic pelvis phantom. Images were acquired using 10 kVp increments (60-120 kVp) for both experiments. The first experiment, based on seven AEC combinations, produced 49 images. The mean mAs from each kVp increment were used as a baseline for the second experiment producing 35 images. A total of 84 images were produced and a panel of 5 experienced observers participated for the image scoring using the 2 AFC visual grading software. PCXMC software was used to estimate the effective dose. Results: A decrease in perceptual image quality as the kVp increases was observed both in non-AEC and AEC experiments, however no significant statistical differences (p> 0.05) were found. Image quality scores from all observers at 10 kVp increments for all mAs values using non-AEC mode demonstrates a better score up to 90 kVp. Effective dose results show a statistical significant decrease (p=0.000) on the 75th quartile from 0.3 mSv at 60 kVp to 0.1 mSv at 120 kVp when applying the 10 kVp rule in non-AEC mode. Conclusion: No significant reduction in perceptual image quality is observed when increasing kVp whilst a marked and significant effective dose reduction is observed.