15 resultados para Food regulation
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A descriptive study was developed to compare air and surfaces fungal contamination in ten hospitals’ food units and two food units from companies. Fifty air samples of 250 litres through impaction method were collected from hospitals’ food units and 41 swab samples from surfaces were also collected, using a 10 by 10 cm square stencil. Regarding the two companies, ten air samples and eight surface samples were collected. Air and surface samples were collected in food storage facilities, kitchen, food plating and canteen. Outdoor air was also collected since this is the place regarded as a reference. Simultaneously, temperature, relative humidity and meal numbers were registered. Concerning air from hospitals’ food units, 32 fungal species were identified, being the two most commonly isolated genera Penicillium sp.
Resumo:
Moulds may produce a diversity of toxins such as aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins and others. Although toxicological, environmental and epidemiological studies have addressed the problem of these toxins one by one, more than one mycotoxin are found usually in the same contaminated food. Risk assessment for humans potentially exposed to multimycotoxins suffers very much from the lack of adequate food consumption data. Furthermore, for a given mycotoxin, synergism and antagonism with other mycotoxins, found in the same food commodities, are not taken into account. Aflatoxin B1 and ochratoxin A belong to the most frequently occurring mycotoxins. This has repeatedly been demonstrated, however, normally, the risk resulting from their simultaneous occurrence is not considered. A descriptive study was developed to monitor air fungal contamination in one hospital food unit.
Resumo:
A descriptive study was developed to monitor air fungal contamination in ten food units from hospitals. Fifty air samples of 250 litres were collected through impaction method. Samples were collected in food storage facilities, kitchen, food plating, canteen and also, outside premises, since this is the place regarded as reference. Simultaneously, environmental parameters were also monitored, including temperature and relative humidity through the equipment Babouc, LSI Sistems and according to the International Standard ISO 7726.
Resumo:
Acetylcholine (ACh) has been shown to exert an anti-inflammatory function by down-modulating the expression of pro-inflammatory cytokines. Its availability can be regulated at different levels, namely at its synthesis and degradation steps. Accordingly, the expression of acetylcholinesterase (AChE), the enzyme responsible for ACh hydrolysis, has been observed to be modulated in inflammation. To further address the mechanisms underlying this effect, we aimed here at characterizing AChE expression in distinct cellular types pivotal to the inflammatory response. This study was performed in the human acute leukaemia monocytyc cell line, THP-1, in human monocyte-derived primary macrophages and in human umbilical cord vein endothelial cells (HUVEC). In order to subject these cells to inflammatory conditions, THP-1 and macrophage were treated with lipopolysaccharide (LPS) from E.coli and HUVEC were stimulated with the tumour necrosis factor α (TNF-α). Our results showed that although AChE expression was generally up-regulated at the mRNA level under inflammatory conditions, distinct AChE protein expression profiles were aurprisingly observed among the distinct cellular types studied. Altogether, these results argue for the existence of cell specific mechanisms that regulate the expression of acetylcholinesterase in inflammation.
Resumo:
Coumarin and derivates (coumarins) are phenolic compounds widely distributed in the plant kingdom, as for example in tonka beam and cassia cinnamon. These compounds are involved in various processes such as the defense against phytopathogens, the response to abiotic stress and the regulation of oxidative stress. Coumarins can be produced synthetically and are broadly used as additives in the food, perfumes and cosmetics and pharmaceutical industry due th their vast array of biological activities, including anticoagulant, analgesic, anti-inflammatory and anti-microbial.
Resumo:
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.
Resumo:
Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.
Resumo:
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.
Resumo:
The evolution of hybrid polyploid vertebrates, their viability and their perpetuation over evolutionary time have always been questions of great interest. However, little is known about the impact of hybridization and polyploidization on the regulatory networks that guarantee the appropriate quantitative and qualitative gene expression programme. The Squalius alburnoides complex of hybrid fish is an attractive system to address these questions, as it includes a wide variety of diploid and polyploid forms, and intricate systems of genetic exchange. Through the study of genome-specific allele expression of seven housekeeping and tissue-specific genes, we found that a gene copy silencing mechanism of dosage compensation exists throughout the distribution range of the complex. Here we show that the allele-specific patterns of silencing vary within the complex, according to the geographical origin and the type of genome involved in the hybridization process. In southern populations, triploids of S. alburnoides show an overall tendency for silencing the allele from the minority genome, while northern population polyploids exhibit preferential biallelic gene expression patterns, irrespective of genomic composition. The present findings further suggest that gene copy silencing and variable expression of specific allele combinations may be important processes in vertebrate polyploid evolution.
Resumo:
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.
Resumo:
Rehabilitation is very important for in the results of treatment in individuals with multiple sclerosis. Rehabilitation processes occur through gradual changes. These changes integrate intrinsic and extrinsic mechanisms of the individual, promoting adaptations to the needs and activities of daily living according to individual goals. Recommendations for exercise in multiple sclerosis: these recommendations apply only to patients with EDSS less than 7; moderate intensity aerobic exercise for a total of 20 to 30 minutes, twice or three times for week; the resistance training with low or moderate intensity is well tolerated by patients with MS; associated with these exercises were recommended flexibility exercises of moderate intensity, as well as strengthening exercises. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in multiple sclerosis patients.
Resumo:
Diethyldithiocarbamate (ditiocarb), a metabolite of the old anti-alcoholic drug disulfiram (Antabuse), forms proteasome-inhibiting metal complexes with copper or zinc that suppress cancer cells both in vitro and in vivo. The drug has been used in a clinical trial (NCT00742911) along with copper gluconate as a dietary supplement in patients with cancer spreading to the liver. In this study, we demonstrate the effect of synthetic complexes of disulfiram with four various metals (Mn, Fe, Cr and Cu) used as food supplements. These complexes may be spontaneously formed in the blood during the use of disulfiram with divalent metals and thus may suppress the growth of cancer in vivo. The cytotoxic effect of the compounds and the compounds' ability to inhibit the cellular proteasome were tested in the osteosarcoma cell line U2OS. After 48 h, copper and manganese complexes exhibited cytotoxic effect on the cell line, in sharp contrast to both iron and chromium complexes. (C) 2014 Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Resumo:
Human exposure to Bisphenol A (BPA) results mainly from ingestion of food and beverages. Information regarding BPA effects on colon cancer, one of the major causes of death in developed countries, is still scarce. Likewise, little is known about BPA drug interactions although its potential role in doxorubicin (DOX) chemoresistance has been suggested. This study aims to assess potential interactions between BPA and DOX on HT29 colon cancer cells. HT29 cell response was evaluated after exposure to BPA, DOX, or co-exposure to both chemicals. Transcriptional analysis of several cancer-associated genes (c-fos, AURKA, p21, bcl-xl and CLU) shows that BPA exposure induces slight up-regulation exclusively of bcl-xl without affecting cell viability. On the other hand, a sub-therapeutic DOX concentration (40nM) results in highly altered c-fos, bcl-xl, and CLU transcript levels, and this is not affected by co-exposure with BPA. Conversely, DOX at a therapeutic concentration (4μM) results in distinct and very severe transcriptional alterations of c-fos, AURKA, p21 and CLU that are counteracted by co-exposure with BPA resulting in transcript levels similar to those of control. Co-exposure with BPA slightly decreases apoptosis in relation to DOX 4μM alone without affecting DOX-induced loss of cell viability. These results suggest that BPA exposure can influence chemotherapy outcomes and therefore emphasize the necessity of a better understanding of BPA interactions with chemotherapeutic agents in the context of risk assessment.
Resumo:
This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).
Resumo:
The preliminary results from a bipolar industrial solidstate based Marx generator, developed for the food industry, capable of delivering 25 kV/250 A positive and negative pulses with 12 kW average power, are presented and discussed. This modular topology uses only four controlled switches per cell, 27 cells in total that can be charged up to 1000V each, the two extra cells are used for droop compensation. The triggering signals for all the switches are generated by a FPGA. Considering that biomaterials are similar to resistive type loads, experimental results from this new bipolar 25 kV modulator into resistive loads are presented and discussed.