20 resultados para Electroencephalogram(ECG)

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comunication in Internationa Conference with Peer Review First International Congress on Cardiovasular Technologies - CARDIOTECHNIX, Vilamoura, Portugal, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources. In this paper we describe the context, experimental considerations, methods, and preliminary findings of two public datasets created by our team, one for short-term and another for long-term assessment, with ECG data collected at the hand palms and fingers. (C) 2013 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosignals analysis has become widespread, upstaging their typical use in clinical settings. Electrocardiography (ECG) plays a central role in patient monitoring as a diagnosis tool in today's medicine and as an emerging biometric trait. In this paper we adopt a consensus clustering approach for the unsupervised analysis of an ECG-based biometric records. This type of analysis highlights natural groups within the population under investigation, which can be correlated with ground truth information in order to gain more insights about the data. Preliminary results are promising, for meaningful clusters are extracted from the population under analysis. © 2014 EURASIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of the electrocardiographic (ECG) signal as a biometric trait has been ascertained in the literature over the past decade. The inherent characteristics of the ECG make it an interesting biometric modality, given its universality, intrinsic aliveness detection, continuous availability, and inbuilt hidden nature. These properties enable the development of novel applications, where non-intrusive and continuous authentication are critical factors. Examples include, among others, electronic trading platforms, the gaming industry, and the auto industry, in particular for car sharing programs and fleet management solutions. However, there are still some challenges to overcome in order to make the ECG a widely accepted biometric. In particular, the questions of uniqueness (inter-subject variability) and permanence over time (intra-subject variability) are still largely unanswered. In this paper we focus on the uniqueness question, presenting a preliminary study of our biometric recognition system, testing it on a database encompassing 618 subjects. We also performed tests with subsets of this population. The results reinforce that the ECG is a viable trait for biometrics, having obtained an Equal Error Rate of 9.01% and an Error of Identification of 15.64% for the entire test population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications involving biosignals, such as Electrocardiography (ECG), are becoming more pervasive with the extension towards non-intrusive scenarios helping targeting ambulatory healthcare monitoring, emotion assessment, among many others. In this study we introduce a new type of silver/silver chloride (Ag/AgCl) electrodes based on a paper substrate and produced using an inkjet printing technique. This type of electrodes can increase the potential applications of biosignal acquisition technologies for everyday life use, given that there are several advantages, such as cost reduction and easier recycling, resultant from the approach explored in our work. We performed a comparison study to assess the quality of this new electrode type, in which ECG data was collected with three types of Ag/AgCl electrodes: i) gelled; ii) dry iii) paper-based inkjet printed. We also compared the performance of each electrode when acquired using a professional-grade gold standard device, and a low cost platform. Experimental results showed that data acquired using our proposed inkjet printed electrode is highly correlated with data obtained through conventional electrodes. Moreover, the electrodes are robust to high-end and low-end data acquisition devices. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral biometrics is one of the areas with growing interest within the biosignal research community. A recent trend in the field is ECG-based biometrics, where electrocardiographic (ECG) signals are used as input to the biometric system. Previous work has shown this to be a promising trait, with the potential to serve as a good complement to other existing, and already more established modalities, due to its intrinsic characteristics. In this paper, we propose a system for ECG biometrics centered on signals acquired at the subject's hand. Our work is based on a previously developed custom, non-intrusive sensing apparatus for data acquisition at the hands, and involved the pre-processing of the ECG signals, and evaluation of two classification approaches targeted at real-time or near real-time applications. Preliminary results show that this system leads to competitive results both for authentication and identification, and further validate the potential of ECG signals as a complementary modality in the toolbox of the biometric system designer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current Electrocardiographic (ECG) signal acquisition methods are generally highly intrusive, as they involve the use of pre-gelled electrodes and cabled sensors placed directly on the person, at the chest or limbs level. Moreover, systems that make use of alternative conductive materials to overcome this issue, only provide heart rate information and not the detailed signal itself. We present a comparison and evaluation of two types of dry electrodes as interface with the skin, targeting wearable and low intrusiveness applications, which enable ECG measurement without the need for any apparatus permanently fitted to the individual. In particular, our approach is targeted at ECG biometrics using signals collected at the hand or finger level. A custom differential circuit with virtual ground was also developed for enhanced usability. Our work builds upon the current stateof-the-art in sensoring devices and processing tools, and enables novel data acquisition settings through the use of dry electrodes. Experimental evaluation was performed for Ag/AgCl and Electrolycra materials, and results show that both materials exhibit adequate performance for the intended application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocardiogram (ECG) biometrics are a relatively recent trend in biometric recognition, with at least 13 years of development in peer-reviewed literature. Most of the proposed biometric techniques perform classifi-cation on features extracted from either heartbeats or from ECG based transformed signals. The best representation is yet to be decided. This paper studies an alternative representation, a dissimilarity space, based on the pairwise dissimilarity between templates and subjects' signals. Additionally, this representation can make use of ECG signals sourced from multiple leads. Configurations of three leads will be tested and contrasted with single-lead experiments. Using the same k-NN classifier the results proved superior to those obtained through a similar algorithm which does not employ a dissimilarity representation. The best Authentication EER went as low as 1:53% for a database employing 503 subjects. However, the employment of extra leads did not prove itself advantageous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometric recognition is emerging has an alternative solution for applications where the privacy of the information is crucial. This paper presents an embedded biometric recognition system based on the Electrocardiographic signals (ECG) for individual identification and authentication. The proposed system implements a real-time state-of-the-art recognition algorithm, which extracts information from the frequency domain. The system is based on a ARM Cortex 4. Preliminary results show that embedded platforms are a promising path for the implementation of ECG-based applications in real-world scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometric recognition has recently emerged as part of applications where the privacy of the information is crucial, as in the health care field. This paper presents a biometric recognition system based on the Electrocardiographic signal (ECG). The proposed system is based on a state-of-the-art recognition method which extracts information from the frequency domain. In this paper we propose a new method to increase the spectral resolution of low bandwidth ECG signals due to the limited bandwidth of the acquisition sensor. Preliminary results show that the proposed scheme reveals a higher identification rate and lower equal error rate when compared to previous approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este projecto pretende criar uma plataforma do tipo framework, para desenvolvimento de software que permita a implementação de sistemas biométricos de identificação e autenticação pessoal, usando sinais electrofisiológicos. O sinal electrocardiograma (ECG) é uma característica biométrica em ascensão, existindo fortes indícios de que contém informação suficiente para discriminar um indivíduo de um conjunto vasto de população. Usa-se a framework desenvolvida para criar aplicações que permitam avaliar o desempenho de várias abordagens do estado da arte do reconhecimento biométrico, baseadas no ECG. A arquitectura típica destes sistemas biométricos inclui blocos de aquisição, préprocessamento, extracção de características e classificação de sinais ECG, utilizando tipicamente duas abordagens distintas. Uma das abordagens (fiducial) assenta em pormenores dos diferentes segmentos da forma de onda do sinal ECG, enquanto que a outra abordagem (nonfiducial) tem a vantagem de não depender criticamente desses pormenores. Neste projecto ainda será explorada uma nova variante numa abordagem (non-fiducial) baseada em compressão de dados. Finalmente, pretende-se ainda estudar o desempenho destas abordagens em sinais ECG adquiridos nas mãos, o que constitui um desafio, dado não existirem actualmente estudos sistemáticos usando este tipo de sinais.