15 resultados para Electrocardiography Data processing
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Coronary artery disease (CAD) is currently one of the most prevalent diseases in the world population and calcium deposits in coronary arteries are one direct risk factor. These can be assessed by the calcium score (CS) application, available via a computed tomography (CT) scan, which gives an accurate indication of the development of the disease. However, the ionising radiation applied to patients is high. This study aimed to optimise the protocol acquisition in order to reduce the radiation dose and explain the flow of procedures to quantify CAD. The main differences in the clinical results, when automated or semiautomated post-processing is used, will be shown, and the epidemiology, imaging, risk factors and prognosis of the disease described. The software steps and the values that allow the risk of developingCADto be predicted will be presented. A64-row multidetector CT scan with dual source and two phantoms (pig hearts) were used to demonstrate the advantages and disadvantages of the Agatston method. The tube energy was balanced. Two measurements were obtained in each of the three experimental protocols (64, 128, 256 mAs). Considerable changes appeared between the values of CS relating to the protocol variation. The predefined standard protocol provided the lowest dose of radiation (0.43 mGy). This study found that the variation in the radiation dose between protocols, taking into consideration the dose control systems attached to the CT equipment and image quality, was not sufficient to justify changing the default protocol provided by the manufacturer.
Resumo:
Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.
Resumo:
Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.
Resumo:
O presente trabalho teve como principal objectivo o desenvolvimento de um analisador de vibrações de dois canais baseado em computador, para a realização de diagnóstico no âmbito do controlo de condição de máquinas. Foi desenvolvida uma aplicação num computador comum, no software LabVIEW, que através de transdutores de aceleração do tipo MEMS conectados via USB, faz a recolha de dados de vibração e procede ao seu processamento e apresentação ao utilizador. As ferramentas utilizadas para o processamento de dados são ferramentas comuns encontradas em vários analisadores de vibrações disponíveis no mercado. Estas podem ser: gráficos de espectro de frequência, sinal no tempo, cascata ou valores de nível global de vibração, entre outras. Apesar do analisador desenvolvido não apresentar inovação nas ferramentas de análise adoptadas, este pretende ser distinguido pelo baixo custo, simplicidade e carácter didáctico. Este trabalho vem evidenciar as vantagens, desvantagens e potencialidades de um analisador desta natureza. São tiradas algumas conclusões quanto à sua capacidade de diagnóstico de avarias, capacidades como ferramenta didáctica, sensores utilizados e linguagem de programação escolhida. Como conclusões principais, o trabalho revela que os sensores escolhidos não são os indicados para efectuar o diagnóstico de avarias em ambiente industrial, contudo são ideais para tornar este analisador numa boa ferramenta didáctica e de treino.
Resumo:
Este trabalho ocorre face à necessidade da empresa Helisuporte ter uma perspectiva a nível de fiabilidade das suas aeronaves. Para isso, foram traçados como objectivos de estudo a criação de uma base de dados de anomalias; identificação de sistemas e componentes problemáticos; caracterização dos mesmos, avaliar a condição de falha e, com isto, apresentar soluções de controlo de anomalias. Assim, foi desenvolvida uma metodologia que proporciona tratamento de dados com recurso a uma análise não-paramétrica, tendo sido escolhida a estatística de amostra. Esta irá permitir a identificação dos sistemas problemáticos e seus componentes anómalos. Efectuado o tratamento de dados, passamos para a caracterização fiabilística desses componentes, assumindo o tempo de operação e a vida útil específica de cada um. Esta foi possível recorrendo ao cálculo do nível de fiabilidade, MTBF, MTBUR e taxa de avarias. De modo a identificar as diferentes anomalias e caracterizar o “know-how” da equipa de manutenção, implementou-se a análise de condição de falha, mais propriamente a análise dos modos e efeitos de falha. Tendo isso em atenção, foi construído um encadeamento lógico simples, claro e eficaz, face a uma frota complexa. Implementada essa metodologia e analisados os resultados podemos afirmar que os objectivos foram alcançados, concluindo-se que os valores de fiabilidade que caracterizam alguns dos componentes das aeronaves pertencentes à frota em estudo não correspondem ao esperado e idealizado como referência de desempenho dos mesmos. Assim, foram sugeridas alterações no manual de manutenção de forma a melhorar estes índices. Com isto conseguiu-se desenvolver, o que se poderá chamar de, “fiabilidade na óptica do utilizador”.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Ressonância Magnética
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para a obtenção do Grau de Mestre em Ciências da Educação - especialidade Supervisão em Educação
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Artística, na especialização de Teatro na Educação
Resumo:
Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Este texto incide sobre o papel da supervisão pedagógica no contexto da avaliação de desempenho docente (ADD), procurando aprofundar a forma como a dimensão formativa da avaliação foi equacionada e desenvolvida nas escolas. Para tal, foram realizados dois estudos num agrupamento de escolas da periferia de Lisboa, abrangendo professores avaliadores e avaliados do 1º e do 2º/3º ciclos. Os estudos tinham como objetivos gerais: i) conhecer asconceções de avaliadores e avaliados sobre os fundamentos e as práticas de avaliação de desempenho desenvolvidas nos seus contextos profissionais; ii) e definir o papel que avaliadores e avaliados atribuem à supervisão neste processo. Para a recolha de dados usou-se a entrevista semi-diretiva, recorrendo-se à análise de conteúdo para tratamento dos dados. O confronto dos resultados das entrevistas permite concluir que as conceções sobre a avaliação de desempenho dos docentes dos diferentes ciclos são semelhantes, mas o processo de avaliação e de supervisão foi vivido de forma distinta. O papel da supervisão na ADD depende, em larga escala, da competência dos avaliadores como supervisores e como professores e é facilitado pela existência prévia de uma cultura de colaboração entre docentes.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Administração e Gestão de Serviços de Saúde
Resumo:
Relatório Final apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclo do Ensino Básico
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.