26 resultados para EQUILIBRIUM MELTING TEMPERATURE

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Philosophical Magazine Letters Volume 88, Issue 9-10, 2008 Special Issue: Solid and Liquid Foams. In commemoration of Manuel Amaral Fortes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n a recent paper we reported an experimental study of two N-alkylimidazolium salts. These ionic compounds exhibit liquid crystalline behaviour with melting points above 50 degrees C in bulk. However, if they are sheared, a (possibly non-equilibrium) lamellar phase forms at room temperature. Upon shearing a thin film of the material between microscope slides, textures were observed that are strikingly similar to liquid (wet) foams. The images obtained from polarising optical microscopy (POM) were found to share many of the known quantitative properties of a two-dimensional foam coarsening process. Here we report an experimental study of this foam using a shearing system coupled with POM. The structure and evolution of the foam are investigated through the image analysis of time sequences of micrographs obtained for well-controlled sets of physical parameters (sample thickness, shear rate and temperature). In particular, we find that there is a threshold shear rate below which no foam can form. Above this threshold, a steady-state foam pattern is obtained where the mean cell area generally decreases with increasing shear rate. Furthermore, the steady-state internal cell angles and distribution of the cell number of sides deviate from their equilibrium (i.e. zero-shear) values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate, via numerical simulations, mean field, and density functional theories, the magnetic response of a dipolar hard sphere fluid at low temperatures and densities, in the region of strong association. The proposed parameter-free theory is able to capture both the density and temperature dependence of the ring-chain equilibrium and the contribution to the susceptibility of a chain of generic length. The theory predicts a nonmonotonic temperature dependence of the initial (zero field) magnetic susceptibility, arising from the competition between magnetically inert particle rings and magnetically active chains. Monte Carlo simulation results closely agree with the theoretical findings. DOI: 10.1103/PhysRevLett.110.148306

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modelling of the experimental data of the extraction of the volatile oil from six aromatic plants (coriander, fennel, savoury, winter savoury, cotton lavender and thyme) was performed using five mathematical models, based on differential mass balances. In all cases the extraction was internal diffusion controlled and the internal mass transfer coefficienty (k(s)) have been found to change with pressure, temperature and particle size. For fennel, savoury and cotton lavender, the external mass transfer and the equilibrium phase also influenced the second extraction period, since k(s) changed with the tested flow rates. In general, the axial dispersion coefficient could be neglected for the conditions studied, since Peclet numbers were high. On the other hand, the solute-matrix interaction had to be considered in order to ensure a satisfactory description of the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcement Learning is an area of Machine Learning that deals with how an agent should take actions in an environment such as to maximize the notion of accumulated reward. This type of learning is inspired by the way humans learn and has led to the creation of various algorithms for reinforcement learning. These algorithms focus on the way in which an agent’s behaviour can be improved, assuming independence as to their surroundings. The current work studies the application of reinforcement learning methods to solve the inverted pendulum problem. The importance of the variability of the environment (factors that are external to the agent) on the execution of reinforcement learning agents is studied by using a model that seeks to obtain equilibrium (stability) through dynamism – a Cart-Pole system or inverted pendulum. We sought to improve the behaviour of the autonomous agents by changing the information passed to them, while maintaining the agent’s internal parameters constant (learning rate, discount factors, decay rate, etc.), instead of the classical approach of tuning the agent’s internal parameters. The influence of changes on the state set and the action set on an agent’s capability to solve the Cart-pole problem was studied. We have studied typical behaviour of reinforcement learning agents applied to the classic BOXES model and a new form of characterizing the environment was proposed using the notion of convergence towards a reference value. We demonstrate the gain in performance of this new method applied to a Q-Learning agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the adverse effect of CO2 from fossil fuel combustion on the earth's ecosystems, the most cost-effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the de-absorption process was developed with monoethanolamine (MEA) solution. Henry's law was used for modelling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng-Robinson equation of state (EOS) were used for H2O, MEA, N-2 and O-2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapour energy balances were developed to calculate the liquid and vapour temperature, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)(6) as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm(-2) and a partial pressure ratio of O-2 to Cr(CO)(6) of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s(-1) and mean particle sizes of 1.85 mu m were measured for these films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of highly oriented a-axis CrO(2) films onto Al(2)O(3)(0001) by atmospheric pressure (AP)CVD at temperatures as low as 330 C is reported. Deposition rates strongly depend on the substrate temperature, whereas for film surface microstructures the dependence is mainly on film thickness. For the experimental conditions used in this work, CrO(2) growth kinetics are dominated by a surface reaction mechanism with an apparent activation energy of (121.0 +/- 4.3) kJ mol(-1). The magnitude and temperature dependence of the saturation magnetization, up to room temperature, is consistent with bulk measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm(-2)) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 +/- 0.2 J cm(-2) and the ablation rate achieved in the range 1 to 2 mu m/pulse for an average fluence of 3 J cm(-2). The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the beta-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main properties of magnetized strangelets, namely, their energy per baryon, radius and electric charge, are studied in the unpaired strange quark matter phase. Temperature effects are taken into account in order to study their stability compared to the (56)Fe isotope and non-magnetized strangelets within the framework of the MIT bag model. It is concluded that the presence of a magnetic field tends to stabilize more the strangelets, even when temperature is considered. We find that the electric charge is modified in the presence of the magnetic field, leading to higher charge values for magnetized strangelets, when compared to the non-magnetized case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main properties of strangelets, namely their energy per baryon, radius and electric charge, are studied in the unpaired magnetized strange quark matter (MSQM) and paired magnetized colour flavour locked (MCFL) phases. Temperature effects are taken into account in order to study their stability compared to the Fe-56 isotope and nonmagnetized strangelets within the framework of the MIT bag model. We conclude that the presence of a magnetic field tends to stabilize the strangelets more, even when temperature is considered. It is also shown that MCFL strangelets are more stable than ordinary MSQM strangelets for typical gap values of the order of O(100) MeV. A distinctive feature in the detection of strangelets either in cosmic rays or in heavy-ion collider experiments could be their electric charge. We find that the electric charge is modified in the presence of the magnetic field, leading to higher (lower) charge values for MSQM (MCFL) strangelets, when compared to the nonmagnetized case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]