44 resultados para Dimensional measurement accuracy
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Introduction: Standard Uptake Value (SUV) is a measurement of the uptake in a tumour normalized on the basis of a distribution volume and is used to quantify 18F-Fluorodeoxiglucose (FDG) uptake in tumors, such as primary lung tumor. Several sources of error can affect its accuracy. Normalization can be based on body weight, body surface area (BSA) and lean body mass (LBM). The aim of this study is to compare the influence of 3 normalization volumes in the calculation of SUV: body weight (SUVW), BSA (SUVBSA) and LBM (SUVLBM), with and without glucose correction, in patients with known primary lung tumor. The correlation between SUV and weight, height, blood glucose level, injected activity and time between injection and image acquisition is evaluated. Methods: Sample included 30 subjects (8 female and 22 male) with primary lung tumor, with clinical indication for 18F-FDG Positron Emission Tomography (PET). Images were acquired on a Siemens Biography according to the department’s protocol. Maximum pixel SUVW was obtained for abnormal uptake focus through semiautomatic VOI with Quantification 3D isocontour (threshold 2.5). The concentration of radioactivity (kBq/ml) was obtained from SUVW, SUVBSA, SUVLBM and the glucose corrected SUV were mathematically obtained. Results: Statistically significant differences between SUVW, SUVBSA and SUVLBM and between SUVWgluc, SUVBSAgluc and SUVLBMgluc were observed (p=0.000<0.05). The blood glucose level showed significant positive correlations with SUVW (r=0.371; p=0.043) and SUVLBM (r=0.389; p=0.034). SUVBSA showed independence of variations with the blood glucose level. Conclusion: The measurement of a radiopharmaceutical tumor uptake normalized on the basis of different distribution volumes is still variable. Further investigation on this subject is recommended.
Resumo:
Introduction - No validated protocol exists for the measurement of the prism fusion ranges. Many studies report on how fusional vergence ranges can be measured using different techniques (rotary prism, prism bar, loose prisms and synoptophore) and stimuli, leading to different ranges being reported in the literature. Repeatability of the different methods available and the equivalence between them it is also important. In addition, some studies available do not agree in what order fusional vergence should be measured to provide the essential information on which to base clinical judgements on compensation of deviations. When performing fusional vergence testing the most commonly accepted clinical technique is to first measure negative fusional vergence followed by a measurement of positive fusional vergence to avoid affecting the value of vergence recovery because of excessive stimulation of convergence. Von Noorden recommend using vertical fusion amplitudes in between horizontal amplitudes (base-out, base-up, base-in, and base down) to prevent vergence adaptation. Others place the base of the prism in the direction opposite to that used to measure the deviation to increase the vergence demand. Objectives - The purpose of this review is to assess and compare the accuracy of tests for measurement of fusional vergence. Secondary objectives are to investigate sources of heterogeneity of diagnostic accuracy including: age; variation in method of assessment; study design; study size; type of strabismus (convergent, divergent, vertical, cycle); severity of strabismus (constant/intermittent/latent).
Resumo:
Microcrystalline silicon is a two-phase material. Its composition can be interpreted as a series of grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of dangling bonds in the transition regions. In this paper, results for the transport properties of a mu c-Si:H p-i-n junction obtained by means of two-dimensional numerical simulation are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken into account and these regions are treated similar to a heterojunction interface. The device is analysed under AM1.5 illumination and the paper outlines the influence of the local electric field at the grain boundary transition regions on the internal electric configuration of the device and on the transport mechanism within the mu c-Si:H intrinsic layer.
Resumo:
The importance of Social Responsibility (SR) is higher if this business variable is related with other ones of strategic nature in business activity (competitive success that the company achieved, performance that the firms develop and innovations that they carries out). The hypothesis is that organizations that focus on SR are those who get higher outputs and innovate more, achieving greater competitive success. A scale for measuring the orientation to SR has defined in order to determine the degree of relationship between above elements. This instrument is original because previous scales do not exist in the literature which could measure, on the one hand, the three classics sub-constructs theoretically accepted that SR is made up and, on the other hand, the relationship between SR and the other variables. As a result of causal relationships analysis we conclude with a scale of 21 indicators, validated scale with a sample of firms belonging to the Autonomous Community of Extremadura and it is the first empirical validation of these dimensions we know so far, in this context.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular. Área de especialização: Intervenção Cardiovascular.
Resumo:
In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to measure the characteristics of the foams, including the number of edges separating small from large bubbles N-sl, the perimeter (surface energy), the distribution of the number of sides of the bubbles, and the topological disorder mu(2)(N). Foams that were initially mixed were found to remain mixed after the deformation. The response of sorted foams, however, depended on the initial geometry, including the area fraction of small bubbles and the total number of bubbles. For a given experiment we found that (i) the perimeter of a sorted foam varied little; (ii) each foam tended towards a mixed state, measured through the saturation of N-sl; and (iii) the topological disorder mu(2)(N) increased up to an "equilibrium" value. The results of different experiments showed that (i) the change in disorder, Delta mu(2)(N), decreased with the area fraction of small bubbles under iso-strain, but was independent of it under iso-stress; and (ii) Delta mu(2)(N) increased with Delta N-sl under iso-strain, but was again independent of it under iso-stress. We offer explanations for these effects in terms of elementary topological processes induced by the deformations that occur at the bubble scale.
Resumo:
We have performed Surface Evolver simulations of two-dimensional hexagonal bubble clusters consisting of a central bubble of area lambda surrounded by s shells or layers of bubbles of unit area. Clusters of up to twenty layers have been simulated, with lambda varying between 0.01 and 100. In monodisperse clusters (i.e., for lambda = 1) [M.A. Fortes, F Morgan, M. Fatima Vaz, Philos. Mag. Lett. 87 (2007) 561] both the average pressure of the entire Cluster and the pressure in the central bubble are decreasing functions of s and approach 0.9306 for very large s, which is the pressure in a bubble of an infinite monodisperse honeycomb foam. Here we address the effect of changing the central bubble area lambda. For small lambda the pressure in the central bubble and the average pressure were both found to decrease with s, as in monodisperse clusters. However, for large,, the pressure in the central bubble and the average pressure increase with s. The average pressure of large clusters was found to be independent of lambda and to approach 0.9306 asymptotically. We have also determined the cluster surface energies given by the equation of equilibrium for the total energy in terms of the area and the pressure in each bubble. When the pressures in the bubbles are not available, an approximate equation derived by Vaz et al. [M. Fatima Vaz, M.A. Fortes, F. Graner, Philos. Mag. Lett. 82 (2002) 575] was shown to provide good estimations for the cluster energy provided the bubble area distribution is narrow. This approach does not take cluster topology into account. Using this approximate equation, we find a good correlation between Surface Evolver Simulations and the estimated Values of energies and pressures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.
Resumo:
This study has a vast analysis, studying almost all the pre-electoral polls published or issued in Portugal in the month previous to each of the elections, since 1991 until the last one that took place in February 2005. The accuracy measures I used were adapted from the study carried out by Frederick Mosteller in the report to the Committee on Analysis of Pre-election Polls, regarding the USA elections of 1948.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.
Resumo:
A crucial method for investigating patients with coronary artery disease (CAD) is the calculation of the left ventricular ejection fraction (LVEF). It is, consequently, imperative to precisely estimate the value of LVEF--a process that can be done with myocardial perfusion scintigraphy. Therefore, the present study aimed to establish and compare the estimation performance of the quantitative parameters of the reconstruction methods filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM). Methods: A beating-heart phantom with known values of end-diastolic volume, end-systolic volume, and LVEF was used. Quantitative gated SPECT/quantitative perfusion SPECT software was used to obtain these quantitative parameters in a semiautomatic mode. The Butterworth filter was used in FBP, with the cutoff frequencies between 0.2 and 0.8 cycles per pixel combined with the orders of 5, 10, 15, and 20. Sixty-three reconstructions were performed using 2, 4, 6, 8, 10, 12, and 16 OSEM subsets, combined with several iterations: 2, 4, 6, 8, 10, 12, 16, 32, and 64. Results: With FBP, the values of end-diastolic, end-systolic, and the stroke volumes rise as the cutoff frequency increases, whereas the value of LVEF diminishes. This same pattern is verified with the OSEM reconstruction. However, with OSEM there is a more precise estimation of the quantitative parameters, especially with the combinations 2 iterations × 10 subsets and 2 iterations × 12 subsets. Conclusion: The OSEM reconstruction presents better estimations of the quantitative parameters than does FBP. This study recommends the use of 2 iterations with 10 or 12 subsets for OSEM and a cutoff frequency of 0.5 cycles per pixel with the orders 5, 10, or 15 for FBP as the best estimations for the left ventricular volumes and ejection fraction quantification in myocardial perfusion scintigraphy.
Resumo:
Neonatal anthropometry is an inexpensive, noninvasive and convenient tool for bedside evaluation, especially in sick and fragile neonates. Anthropometry can be used in neonates as a tool for several purposes: diagnosis of foetal malnutrition and prediction of early postnatal complications; postnatal assessment of growth, body composition and nutritional status; prediction of long-term complications including metabolic syndrome; assessment of dysmorphology; and estimation of body surface. However, in this age group anthropometry has been notorious for its inaccuracy and the main concern is to make validated indices available. Direct measurements, such as body weight, length and body circumferences are the most commonly used measurements for nutritional assessment in clinical practice and in field studies. Body weight is the most reliable anthropometric measurement and therefore is often used alone in the assessment of the nutritional status, despite not reflecting body composition. Derived indices from direct measurements have been proposed to improve the accuracy of anthropometry. Equations based on body weight and length, mid-arm circumference/head circumference ratio, and upper-arm cross-sectional areas are among the most used derived indices to assess nutritional status and body proportionality, even though these indices require further validation for the estimation of body composition in neonates.
Resumo:
The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771591]
Resumo:
This paper discusses the photodiode capacitance dependence on imposed light and applied voltage using different devices. The first device is a double amorphous silicon pin-pin photodiode; the second one a crystalline pin diode and the last one a single pin amorphous silicon diode. Double amorphous silicon diodes can be used as (de)multiplexer devices for optical communications. For short range applications, using plastic optical fibres, the WDM (wavelength-division multiplexing) technique can be used in the visible light range to encode multiple signals. Experimental results consist on measurements of the photodiode capacitance under different conditions of imposed light and applied voltage. The relation between the capacitive effects of the double diode and the quality of the semiconductor internal junction will be analysed. The dynamics of charge accumulations will be measured when the photodiode is illuminated by a pulsed monochromatic light.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.