53 resultados para Digital-to-analog converters

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia de Eletrónica e Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this brief, a read-only-memoryless structure for binary-to-residue number system (RNS) conversion modulo {2(n) +/- k} is proposed. This structure is based only on adders and constant multipliers. This brief is motivated by the existing {2(n) +/- k} binary-to-RNS converters, which are particular inefficient for larger values of n. The experimental results obtained for 4n and 8n bits of dynamic range suggest that the proposed conversion structures are able to significantly improve the forward conversion efficiency, with an AT metric improvement above 100%, regarding the related state of the art. Delay improvements of 2.17 times with only 5% area increase can be achieved if a proper selection of the {2(n) +/- k} moduli is performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the Direct Power Control of Three-Phase Matrix Converters (DPC-MC) operating as Unified Power Flow Controllers (UPFC). Since matrix converters allow direct AC/AC power conversion without intermediate energy storage link, the resulting UPFC has reduced volume and cost, together with higher reliability. Theoretical principles of DPC-MC method are established based on an UPFC model, together with a new direct power control approach based on sliding mode control techniques. As a result, active and reactive power can be directly controlled by selection of an appropriate switching state of matrix converter. This new direct power control approach associated to matrix converters technology guarantees decoupled active and reactive power control, zero error tracking, fast response times and timely control actions. Simulation results show good performance of the proposed system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Eletrónica Industrial

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new generalized solution for DC bus capacitors voltage balancing in back-to-back m level diode-clamped multilevel converters connecting AC networks. The solution is based on the DC bus average power flow and exploits the switching configuration redundancies. The proposed balancing solution is particularized for the back-to-back multilevel structure with m=5 levels. This back-to-back converter is studied working with bidirectional power flow, connecting an induction machine to the power grid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sliding mode controllers for power converters usually employ hysteresis comparators to directly generate the power semiconductors switching states. This paper presents a new sliding mode modulator based on the direct implementation of the sliding mode stability condition, which for multilevel power converters shows advantages, as branch equalized switching frequencies and less distortion on the ac currents when operating near the rated converter power. The new sliding mode multilevel modulator is used to control a three-phase multilevel converter, operated as a reactive power compensator (STATCOM), implementing the stability condition in a digital signal processing system. The performance of this new sliding mode modulator is compared with a multilevel modulator based on hysteresis comparators. Simulation and experimental results are presented in order to highlight the system operation and control robustness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter addresses technical issues concerning digital technologies. Radiological equipment and technique are briefly introduced together with a discussion about requirements and advantages of digital technologies. Digital technologies offer several advantages when compared to conventional analogical systems, or screen–film (SF) systems. While in clinical practice the practitioners should be aware of technical factors such as image acquisition, management of patient dose, and diagnostic image quality. Thus, digital technologies require an up-to-date scientific knowledge concerning their use in projection radiography. In this chapter, technical considerations concerning digital technologies are provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multilevel power converters have been introduced as the solution for high-power high-voltage switching applications where they have well-known advantages. Recently, full back-to-back connected multilevel neutral point diode clamped converters (NPC converter) have been used inhigh-voltage direct current (HVDC) transmission systems. Bipolar-connected back-to-back NPC converters have advantages in long-distance HVDCtransmission systems over the full back-to-back connection, but greater difficulty to balance the dc capacitor voltage divider on both sending and receiving end NPC converters. This study shows that power flow control and dc capacitor voltage balancing are feasible using fast optimum-predictive-based controllers in HVDC systems using bipolar back-to-back-connected five-level NPC multilevel converters. For both converter sides, the control strategytakes in account active and reactive power, which establishes ac grid currents in both ends, and guarantees the balancing of dc bus capacitor voltages inboth NPC converters. Additionally, the semiconductor switching frequency is minimised to reduce switching losses. The performance and robustness of the new fast predictive control strategy, and its capability to solve the DC capacitor voltage balancing problem of bipolar-connected back-to-back NPCconverters are evaluated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is on offshore wind energy conversion systems installed on the deep water and equipped with back-to-back neutral point clamped full-power converter, permanent magnet synchronous generator with an AC link. The model for the drive train is a five-mass model which incorporates the dynamic of the structure and the tower in order to emulate the effect of the moving surface. A three-level converter and a four-level converter are the two options with a fractional-order control strategy considered to equip the conversion system. Simulation studies are carried out to assess the quality of the energy injected into the electric grid. Finally, conclusions are presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e Eletrónica Industrial

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implementing monolithic DC-DC converters for low power portable applications with a standard low voltage CMOS technology leads to lower production costs and higher reliability. Moreover, it allows miniaturization by the integration of two units in the same die: the power management unit that regulates the supply voltage for the second unit, a dedicated signal processor, that performs the functions required. This paper presents original techniques that limit spikes in the internal supply voltage on a monolithic DC-DC converter, extending the use of the same technology for both units. These spikes are mainly caused by fast current variations in the path connecting the external power supply to the internal pads of the converter power block. This path includes two parasitic inductances inbuilt in bond wires and in package pins. Although these parasitic inductances present relative low values when compared with the typical external inductances of DC-DC converters, their effects can not be neglected when switching high currents at high switching frequency. The associated overvoltage frequently causes destruction, reliability problems and/or control malfunction. Different spike reduction techniques are presented and compared. The proposed techniques were used in the design of the gate driver of a DC-DC converter included in a power management unit implemented in a standard 0.35 mu m CMOS technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the efficient design of an improved and dedicated switched-capacitor (SC) circuit capable of linearizing CMOS switches to allow SC circuits to reach low distortion levels. The described circuit (SC linearization control circuit, SLC) has the advantage over conventional clock-bootstrapping circuits of exhibiting low-stress, since large gate voltages are avoided. This paper presents exhaustive corner simulation results of a SC sample-and-hold (S/H) circuit which employs the proposed and optimized circuits, together with the experimental evaluation of a complete 10-bit ADC utilizing the referred S/H circuit. These results show that the SLC circuits can reduce distortion and increase dynamic linearity above 12 bits for wide input signal bandwidths.