9 resultados para Depth Estimation,Deep Learning,Disparity Estimation,Computer Vision,Stereo Vision
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Estereopsia define-se como a perceção de profundidade baseada na disparidade retiniana. A estereopsia global depende do processamento de estímulos de pontos aleatórios e a estereopsia local depende da perceção de contornos. O objetivo deste estudo é correlacionar três testes de estereopsia: TNO®, StereoTAB® e Fly Stereo Acuity Test® e verificar a sensibilidade e correlação entre eles, tendo o TNO® como gold standard. Incluíram-se 49 estudantes da Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL) entre os 18 e 26 anos. As variáveis ponto próximo de convergência (ppc), vergências, sintomatologia e correção ótica foram correlacionadas com os três testes. Os valores médios (desvios-padrão) de estereopsia foram: TNO® = 87,04’’ ±84,09’’; FlyTest® = 38,18’’ ±34,59’’; StereoTAB® = 124,89’’ ±137,38’’. Coeficiente de determinação: TNO® e StereoTAB® com R2=0,6 e TNO® e FlyTest® com R2=0,2. O coeficiente de correlação de Pearson mostra uma correlação positiva de entre o TNO® e o StereoTAB® (r=0,784 com α=0,01). O coeficiente de associação de Phi mostrou uma relação positiva forte entre o TNO® e StereoTAB® (Φ=0,848 com α=0,01). Na curva ROC, o StereoTAB® possui uma área sob a curva maior que o FlyTest®, apresentando valor de sensibilidade de 92,3% para uma especificidade de 94,4%, tornando-o num teste sensível e com bom poder discriminativo.
Resumo:
Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo Automação e Electrónica Industrial
Resumo:
Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
Computer Vision Syndrome (CSV): 1) Conjunto de complicações desencadeadas com o acto de fixação para perto, que são experimentadas durante ou após o uso do computador; 2) Distúrbio caracterizado pelo esforço repetitivo de perto traduzindo-se em sintomas oculares e não oculares. Pertinência do estudo: os trabalhadores de telecomunicações desempenham actividades prolongadas de fixação para perto, o que pode originar queixas de fadiga visual devido ao stress exercido sob a convergência acomodativa. Objectivos do estudo: 1) Identificar quais os parâmetros da visão binocular que são mais influenciados pelo uso prolongado do computador; 2) Comparar a visão binocular em dois grupos de indivíduos com e sem sintomatologia ocular.
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
Purpose: Stereopsis is the perception of depth based on retinal disparity. Global stereopsis depends on the process of random dot stimuli and local stereopsis depends on contour perception. The aim of this study was to correlate 3 stereopsis tests: TNO®, StereoTA B®, and Fly Stereo Acuity Test® and to study the sensitivity and correlation between them, using TNO® as the gold standard. Other variables as near convergence point, vergences, symptoms and optical correction were correlated with the 3 tests. Materials and Methods: Forty-nine students from Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), aged 18-26 years old were included. Results: The stereopsis mean (standard-deviation-SD) values in each test were: TNO® = 87.04” ±84.09”; FlyTest® = 38.18” ±34.59”; StereoTA B® = 124.89’’ ±137.38’’. About the coefficient of determination: TNO® and StereoTA B® with R2 = 0.6 e TNO® and FlyTest® with R2 =0.2. Pearson correlation coefficient shows a positive correlation between TNO® and StereoTA B® (r = 0.784 with α = 0.01). Phi coefficient shows a strong and positive association between TNO® and StereoTA B® (Φ = 0.848 with α = 0.01). In the ROC Curve, the StereoTA B® has an area under the curve bigger than the FlyTest® with a sensivity of 92.3% for 94.4% of specificity, so it means that the test is sensitive with a good discriminative power. Conclusion: We conclude that the use of Stereopsis tests to study global Stereopsis are an asset for clinical use. This type of test is more sensitive, revealing changes in Stereopsis when it is actually changed, unlike the test Stereopsis, which often indicates normal Stereopsis, camouflaging a Stereopsis change. We noted also that the StereoTA B ® is very sensitive and despite being a digital application, possessed good correlation with the TNO®.