46 resultados para Coordination compounds.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The reactions between 4'-phenyl-terpyridine (L) and nitrate, acetate or chloride Cu(II) salts led to the formation of [Cu(NO3)(2)L] (1), [Cu(OCOCH3)(2)L]center dot CH2Cl2 (2 center dot CH2Cl2)and [CuCl2L]center dot[Cu(Cl)(mu-Cl)L](2) (3), respectively. Upon dissolving 1 in mixtures of DMSO-MeOH or EtOH-DMF the compounds [Cu(H2O){OS(CH3)(2)}L]-(NO3)(2) (4) and [Cu(HO)(CH3CH2OH)L](NO3) (5) were obtained, in this order. Reaction of 3 with AgSO3CF3 led to [CuCl(OSO2CF3)L] (6). The compounds were characterized by ESI-MS, IR, elemental analysis, electrochemical techniques and, for 2-6, also by single crystal X-ray diffraction. They undergo, by cyclic voltammetry, two single-electron irreversible reductions assigned to Cu(II) -> Cu(I)and Cu(I) -> Cu(0) and, for those of the same structural type, the reduction potential appears to correlate with the summation of the values of the Lever electrochemical EL ligand parameter, which is reported for the first time for copper complexes. Complexes 1-6 in combination with TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl radical) can exhibit a high catalytic activity, under mild conditions and in alkaline aqueous solution, for the aerobic oxidation of benzylic alcohols. Molar yields up to 94% (based on the alcohol) with TON values up to 320 were achieved after 22 h.
Resumo:
The reactions of [ReCl2{eta(2)-N2C(O)Ph}(PPh3)(2)](1) with 2-aminopyrimidine (H(2)Npyrm), 2,2'-bipyridine (bpy) and tetraethylthiuram disulfide (tds), in MeOH upon reflux, lead to the new eta(1)-(benzoyldiazenido)-rhenium(III) complexes [ReCl{eta(1)-N2C(O)Ph}(HNpyrm)(PPh3)(2)](2)and [ReCl2{eta(1)-N2C(O)Ph}(bpy)(PPh3)] (3), and the known oxo(diethyldithiocarbamato)dirhenium(v)complex [Re2O2(mu O){Et2NC(S)S}(4)](4), respectively. The Et2NC(S)S ligands in 4 result from S-S bond rupture of tds molecules. The obtained compounds have been characterized by IR, H-1, P-31{H-1} and C-13{H-1} NMR spectroscopies, FAB(+)-MS, elemental and single-crystal X-ray diffraction (for 2 and 4)analyses. Complex 2 represents the first structurally characterized Re compound derived from 2-aminopyrimidine. Besides, the redox behaviour of 2-4 in CH2Cl2 solution has been studied by cyclic voltammetry, and the Lever electrochemical ligand parameter (E-L)has been estimated, for the first time, for HNpyrm. The electrochemical results are discussed in terms of electronic properties of the Re centres and the ligands.
Resumo:
Trends between the Hammett's sigma(p) and related normal sigma(n)(p), inductive sigma(I), resonance sigma(R), negative sigma(-)(p) and positive sigma(+)(p) polar conjugation and Taft's sigma(o)(p) substituent constants and the N-H center dot center dot center dot O distance, delta(N-H) NMR chemical shift, oxidation potential (E-p/2(ox), measured in this study by cyclic voltammetry (CV)) and thermodynamic parameters (pK, Delta G(0), Delta H-0 and Delta S-0) of the dissociation process of unsubstituted 3-(phenylhydrazo)pentane-2,4-dione (HL1) and its para-substituted chloro (HL2), carboxy (HL3), fluoro (HL4) and nitro (HL5) derivatives were recognized. The best fits were found for sigma(p) and/or sigma(-)(p) in the cases of d(N center dot center dot center dot O), delta(N-H) and E-p/2(ox), showing the importance of resonance and conjugation effects in such properties, whereas for the above thermodynamic properties the inductive effects (sigma(I)) are dominant. HL2 exists in the hydrazo form in DMSO solution and in the solid state and contains an intramolecular H-bond with the N center dot center dot center dot O distance of 2.588(3)angstrom. It was also established that the dissociation process of HL1-5 is non-spontaneous, endothermic and entropically unfavourable, and that the increase in the inductive effect (sigma(I)) of para-substitutents (-H < -Cl < -COOH < -F < -NO2) leads to the corresponding growth of the N center dot center dot center dot O distance and decrease of the pK and of the changes of Gibbs free energy, of enthalpy and of entropy for the HL1-5 acid dissociation process. The electrochemical behaviour of HL1-5 was interpreted using theoretical calculations at the DFT/HF hybrid level, namely in terms of HOMO and LUMO compositions, and of reactivities induced by anodic and cathodic electron-transfers. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Gold(III) complexes of type [AuCl2{eta(2)-RC(R'pz)(3)}]Cl [R = R' = H (1), R = CH2OH, R' = H (2) and R = H, R' = 3,5-Me-2(3), pz = pyrazol-1-yl] were supported on carbon materials (activated carbon, carbon xerogel and carbon nanotubes) and used for the oxidation of cyclohexane to cyclohexanol and cyclohexanone, with aqueous H2O2, under mild conditions.
Resumo:
fac-[MBr(CO)(3)(pypzH)] (M = Mn, Re; pypzH = (3-(2-pyridyl) pyrazole) complexes are prepared from fac[ MBr(CO)(3)(NCMe)(2)] and pypzH. The result of their deprotonation depends on the metallic substrate: the rhenium complex affords cleanly the bimetallic compound [fac-{Re(CO)(3)(mu(2)-pypz)}] 2 (mu(2)-pypz = mu(2)-3-(2pyridyl-. 1N) pyrazolate-2. 1N), which was crystallographically characterized, whereas a similar manganese complex was not detected. When two equivalents of pyridylpyrazolate are used, polymetallic species [fac-M(CO) 3(mu(2)-pypz)(mu(3)-pypz) M'] (mu(3)-pypz = mu(3)-3-(2-pyridyl-kappa N-1) pyrazolate-1 kappa 2N, N: 2. 1N:; M = Mn, M' = Li, Na, K; M = Re, M' = Na) are obtained. The crystal structures of the manganese carbonylate complexes were determined. The lithium complex is a monomer containing one manganese and one lithium atom, whereas the sodium and potassium complexes are dimers and reveal an unprecedented coordination mode for the bridging 3-(2-pyridyl) pyrazolate ligand, where the nitrogen of the pyridyl fragment and the nitrogen-1 of pyrazolate are chelated to manganese atoms, and each nitrogen-2 of pyrazolate is coordinated to two alkaline atoms. The polymetallic carbonylate complexes are unstable in solution and evolve spontaneously to [fac-{Re(CO) 3(mu(2)-pypz)}](2) or to the trimetallic paramagnetic species [MnII(mu(2)-pypz) 2{fac-{MnI(CO) 3(mu(2)-pypz)}(2)}]. The related complex cis-[MnCl2(pypzH)(2)] was also synthesized and structurally characterized. The electrochemical behavior of the new homo-and heteropolymetallic 3-(2-pyridyl) pyrazolate complexes has been studied and details of their redox properties are reported.
Resumo:
Two series of new diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes (cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl), formulated as the mononuclear [R2Sn(HL)(2)] (1:2) (a, R=Bu-n and Ph) and the polymeric [R2SnL](n) (1:1) (b, R=Bu-n) compounds, were prepared and fully characterized. Single crystal X-ray diffraction for [(Bu2Sn)-Bu-n{C5H9C(O)NHO}(2)] (3a) discloses the cis geometry and strong intermolecular NH center dot center dot center dot O interactions. The in vitro cytotoxic activities of the complexes were evaluated against HL-60, Bel-7402, BGC-823 and KB human tumour cell lines, the greater activity concerning [(Bu2Sn)-Bu-n(HL)(2)] [HL=C3H5C(O)NHO (1a), C6H11C(O)NHO (4a)] towards BGC-823. The complexes undergo, by cyclic voltammetry and controlled-potential electrolysis, one irreversible overall two-electron cathodic process at a reduction potential that does not appear to correlate with the antitumour activity. The electrochemical behaviour of [R2Sn(C5H9C(O)NHO)(2)] [R=Bu-n (3a), Ph (7a)] was also investigated using density functional theory (DFT) methods, showing that the ultimate complex structure and the mechanism of its formation are R dependent: for the aromatic (R = Ph) complex, the initial reduction step is centred on the phenyl ligands and at the metal, being followed by a second reduction with Sn-O and Sn-C ruptures, whereas for the alkyl (R=Bu-n) complex the first reduction step is centred on one of the hydroxamate ligands and is followed by a second reduction with Sn-O bond cleavages and preservation of the alkyl ligands. In both cases, the final complexes are highly coordinative unsaturated Sn-II species with the cis geometry, features that can be of biological significance.
Resumo:
The new potentially N-4-multidentate pyridyl-functionalized scorpionates 4-((tris-2,2,2-(pyrazol-1-ypethoxy)methyl)pyridine (TpmPy, (1)) and 4-((tris-2,2,2-(3-phenylpyrazol-1-yl)ethoxy)methyl)pyridine (TpmPy(Ph), (2)) have been synthesized and their coordination behavior toward Fe-II, Ni-II, Zn-II, Cu-II, Pd-II, and V-III centers has been studied. Reaction of (1) with Fe(BF4)(2)center dot 6H(2)O yields [Fe(TpmPy)(2)](BF4)(2) (3), that, in the solid state, shows the sandwich structure with trihapto ligand coordination via the pyrazolyl arms, and is completely low spin (LS) until 400 K. Reactions of 2 equiv of (1) or (2) with Zn-II or Ni-II chlorides give the corresponding metal complexes with general formula [MCl2(TpmPy*)(2)] (M = Zn, Ni; TpmPy* = TpmPy, TpmPy(Ph)) (4-7) where the ligand is able to coordinate through either the pyrazolyl rings (in case of [Ni(TpmPy)(2)Cl-2 (5)) or the pyridyl-side (for [ZnCl2(TpmPy)(2)] (4), [ZnCl2(TpmPy(Ph))(2)] (6) and [NiCl2(TpmPy(Ph))(2)] (7)). The reaction of (1) with VCl3 gives [VOCl2(TpmPy)] (8) that shows the N-3-pyrazolyl coordination-mode. Moreover, (1) and react with cis-[PdCl2(CH3CN)(2)] to give the disubstituted complexes [PdCl2(TprnPy)(2)] (9) and [PdCl2(TpmPy(Ph))(2)] (10), respectively, bearing the scorpionate coordinated via the pyridyl group. Compounds (9) and (10) react with Fe(BF4)(2) to give the heterobimetallic Pd/Fe systems [PdCl2(mu-TpmPy)(2)-Fe](BF4)(2) (11) and [PdCl2(mu-TpmPy(Ph))(2)Fe-2(H2O)(6)]BF4)(4) (13), respectively. Compound (11) can also be formed from reaction of (3) with cis-[PdCl2(CH3CN)(2)], while reaction of (3) with Cu(NO3)(2).2.5H(2)O generates [Fe(mu-TpmPy)(2)-Cu(NO3)(2)](BF4)(2) (12), confirming the multidentate ability of the new chelating ligands. The X-ray diffraction analyses of compounds (1), (3), (4), (5), and (9) are also reported.
Resumo:
The compounds [mPTA][CoCl4] (1, mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [CoCl(H2O)(DION)(2)][BF4] (2, DION = 1,10-phenanthroline-5,6-dione), [Zn(DION)(2)]Cl-2 (3) and [ZnCl(O-PTA=O)(DION)][BF4] (4) were synthesized by reaction of CoCl2 with [mPTA]I or DION and ZnCl2 with DION or 1,3,5-triaza-7-phosphaadamantane-7-oxide (PTA=O) and DION, respectively. All complexes are water soluble and have been characterized by IR, far-IR, H-1, C-13 and P-31{H-1} NMR spectroscopy, ESI-MS, elemental analyses and single-crystal X-ray diffraction structural analysis (for 1). They were screened against the human tumour cell lines HCT116, HepG2 and MCF7. Complexes 2 and 3 exhibit the highest in vitro cytotoxicity and show lower cytotoxic activities in normal human fibroblast cell line than in HCT116 tumour cell line, which demonstrates their slight specificity for this type of tumour cell.
Resumo:
Tri-and hexa-cyanoethyl functionalized 17-(L-1) and 42-membered (L-2) macrocyclic compounds were obtained by [1 + 1] (for L-1) or [2 + 2] (for L-2) cyclocondensation of the corresponding dialdehyde and diethylenetriamine, followed by hydrogenation by KBH4 and subsequent cyano-functionalization with acrylonitrile. They react with silver nitrate, leading to the formation of [AgL1](NO3) (1) and of the metalorganic coordination polymers [Ag-2(NO3)(2)L-1](n) (2) and {[Ag2L2](NO3)(2)}(n) (3). The complexes were characterized by elemental analysis, H-1 NMR, C-13 NMR, IR spectroscopies, and ESI-MS; moreover, L-2, 1, 2 and 3 were also characterized by single crystal X-ray diffraction. The metal cation in 1 is pentacoordinated with a N3O2 coordination environment; in 2, the metal cations display N4O2 octahedral and N2O3 square-pyramid coordination and in 3 they are in square-planar N-4 sites. In 1, the ligand acts as a pentadentate chelator, and in the other two cases, the ligands behave as octadentate chelators in a 1 kappa N-3:kappa O-2,2 kappa N,3 kappa N,4 kappa N (in 2) or 1 kappa N-3,2 kappa N-3,3 kappa N,4 kappa N fashion (in 3). The cyanoethyl strands of the ligands are directly involved in the formation of the 2D frameworks of 2 and 3, which in the former polymer can be viewed as a net composed of hexametallic 36-membered macrocyclic rings and in the latter generates extra hexametallic 58-membered cyclic sets that form zig-zag layers. The thermal analytical and electrochemical properties of these silver complexes were also studied.
Resumo:
New ortho-substituted arylhydrazones of barbituric acid, 5-(2-(2-hydroxyphenyl)hydrazono) pyrimidine-2,4,6(1H,3H,5H)-trione (H4L1) and the sodium salt of 2-(2-(2,4,6-trioxotetra-hydropyrimidin-5(2H)-ylidene)hydrazinyl) benzenesulfonic acid (H4L2), [Na(H3L2)(mu-H2O)(H2O)(2)](2) (1), were used in the synthesis of Cu-II, Co-II and Co-II/III complexes, [Cu(H2L1)(H2O)(im)]center dot 3H(2)O (im = imidazole) (2), [Co(H2O)(6)] [Co(H2L1)(2)](2)center dot 8H(2)O (3), [Co(H2L2)(im)(3)] (4), [Cu(H2L2)(im)(2)]center dot H2O (5) and [Co(H2O)(6)][H3L2](2)center dot 8H(2)O (6). The complexes are water soluble and the mono-or di-deprotonated ligands display different coordination modes, depending on the synthetic conditions. The electrochemical behaviour of all the compounds was investigated by cyclic voltammetry and controlled potential electrolysis, revealing that the ligands are also redox active. All the compounds were evaluated as catalysts for the peroxidative (with H2O2) oxidation of cyclohexane at room temperature. The compounds 2 and 3 are the most active ones (yields up to 21% and TON up to 213 are achieved, in the presence of 3).
Resumo:
The tris(1-pyrazolyl)methanesulfonate lithium salt Li(Tpms) [Tpms = SO3C(pz)(3)-] reacts with [Mo(CO)(6)] in NCMe heated at reflux to yield Li[Mo(Tpms)(CO)(3)] (1), which, upon crystallization from thf, forms the coordination polymer [Mo(Tpms)(CO)(2)(mu-CO)Li(thf)(2)](n) (2). Reaction of 1 with I-2, HBF4 or AgBF4 yields [Mo(Tpms)I(CO)(3)] (3), (Mo(Tpms)-H(CO)(3)] (5) or (Mo(Tpms)O-2](2)(mu-O) (7), respectively. The high-oxidation-state dinuclear complexes [{Mo(Tpms)O(mu-O)}(2)] (4) and [{Mo(tpms)OCl)(2)](mu-O) (6) are formed upon exposure to air of solutions of 3 and 5, respectively. Compounds 1-7, which appear to be the first tris(pyrazolyl)methanesulfonate complexes of molybdenum to be reported, were characterized by IR, H-1 and C-13 NMR spectroscopy, ESI-MS, elemental analysis, cyclic voltammetry and, in the cases of Li(Tpms) and compounds 2, 4.2CH(3)CN, 6.6CHCl(3) and 7, by X-ray diffraction analyses. Li(Tpms) forms a 1D polymeric structure (i.e., [Li(tpms)](n)} with Tpms as a tetradentate N2O2 chelating ligand that bridges two Li cations with distorted tetrahedral coordination. Compound 2 is a 1D coordination polymer in which Tpms acts as a bridging tetradentate N3O ligand and each Li(thf)(2)(+) moiety is coordinated by one bridging CO ligand and by the sulfonyl group of a contiguous monomeric unit. In 4, 6 and 7, the Tpms ligand is a tridentate chelator either in the NNO (in 4) or in the NNN (in 6 and 7) fashion. Complexes 1, 3 and 5 exhibit, by cyclic voltammetry, a single-electron oxidation at oxidation potential values that indicate that the Tpms ligand has an electron-donor character weaker than that of cyclopentadienyl.
Resumo:
In the printing industry, volatile organic compounds main sources are the uses of organic solvents, fountain solutions and cleaning agents. Nowadays, one circumstance which might confuse the exposure reality is that the majority of solvents which are often used have a faint odour. Therefore, the conditions at offset printing in regard to solvent exposure may seem acceptable to workers. Fortunately, general ventilation and local exhaust systems have also become more common, and new printing machines, often with automatic cleaning, have entered the market. The health effects of volatile organic solvents are dependent on the chemicals involved but, normally, are associated with affecting the nervous system, the liver and also the kidneys. The purpose of this study was to document the conditions regarding exposure to volatile organic compounds in an offset printing unit and to permit identify task with higher exposure and with priority for preventive measures application. Exposure assessment was done before and after installation of general ventilation and local exhaust equipments and during printing and cleaning procedure.
Ventilation influence in occupational exposure to fungi and volatile organic compounds: poultry case
Resumo:
Introduction - In poultry houses, large-scale production has led to increased bird densities within buildings. Such high densities of animals kept within confined spaces are a source of human health problems related to occupational organic dust exposure. This organic dust is composed of both non-viable particles and viable particulate matter (also called bioaerosols). Bioaerosols are comprised by airborne bacteria, fungi, viruses and their by-products, endotoxins and mycotoxins. Exposure to fungi in broiler houses may vary depending upon the applied ventilation system. Ventilation can be an important resource in order to reduce air contamination in these type of settings. Nevertheless, some concerns regarding costs, sensitivity of the animal species to temperature differences, and also the type of building used define which type of ventilation is used. Aim of the study - A descriptive study was developed in one poultry unit aiming to assess occupational fungal and volatile organic compounds (VOCs) exposure.
Resumo:
The dioxovanadium(V) complexes [VO2(3,5-Me(2)Hpz)(3)][BF4] (1) (pz = pyrazolyl), [VO2{SO3C(pz)(3)}] (2), [VO2{HB(3,5-Me(2)pz)(3)}] (3) and [VO2{HC(pz)(3)}][BF4] (4), bearing pyrazole or scorpionate ligands, were obtained by reaction of triethyl vanadate [VO(OEt)(3)] with hydrotris(3,5-dimethyl-1-pyrazolyl)methane [HC(3,5-Me(2)pz)(3)] or 3,5-dimethylpyrazole (3,5-Me(2)Hpz; 1), lithium tris(1-pyrazolyl)methanesulfonate {Li[SO3C(pz)(3)], 2}, potassium hydrotris(3,5-dimethyl-1-pyrazolyl)borate {K[HB(3,5-Me(2)pz)(3)], 3} and hydrotris(1-pyrazolyl)methane [HC(pz)(3), 4], respectively. Treatment of [VO(OEt)(3)] with potassium hydrotris(1-pyrazolyl)borate {K[HB(pz)(3)]} led to the mixed eta(3)-tris(pyrazolyl)borate and eta(2)-bis(pyrazolyl)borate oxovanadium(IV) complex [VO{HB(pz)(3)}{H2B(pz)(2)}, 5]. The compounds were characterized by elemental analyses, IR, NMR and EPR spectroscopy, FAB and ESI mass spectrometry, cyclic voltammetry and, for 5, also by single crystal X-ray diffraction analysis. All complexes exhibit catalytic activity in the single-pot carboxylation [in trifluoroacetic acid/potassium peroxodisulfate (CF3COOH/K2S2O8)] of gaseous alkanes (methane and ethane) to carboxylic acids (yields up to 40%. TONs up to 157) and in the peroxidative oxidation [in water/acetonitrile (H2O/NCMe)] of liquid alkanes (cyclohexane and cyclopentane) to the corresponding alcohols and ketones (yields up to 24%, TONs up to 117), under mild conditions.
Resumo:
Solution enthalpies of adamantan-1-ol, 2-methyl- butan-2-ol, and 3-methylbutan-1-ol have been measured at 298.15 K, in a set of 16 protogenic and non-protogenic solvents. The identification and quantification of solvent effects on the solution processes under study were performed using quantitative-structure property relationships. The results are discussed in terms of solute-solvent-solvent interactions and also in terms of the influence of compound's size and position of its hydroxyl group.