47 resultados para Content analysis (Communication) -- Data processing
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Este texto incide sobre o papel da supervisão pedagógica no contexto da avaliação de desempenho docente (ADD), procurando aprofundar a forma como a dimensão formativa da avaliação foi equacionada e desenvolvida nas escolas. Para tal, foram realizados dois estudos num agrupamento de escolas da periferia de Lisboa, abrangendo professores avaliadores e avaliados do 1º e do 2º/3º ciclos. Os estudos tinham como objetivos gerais: i) conhecer asconceções de avaliadores e avaliados sobre os fundamentos e as práticas de avaliação de desempenho desenvolvidas nos seus contextos profissionais; ii) e definir o papel que avaliadores e avaliados atribuem à supervisão neste processo. Para a recolha de dados usou-se a entrevista semi-diretiva, recorrendo-se à análise de conteúdo para tratamento dos dados. O confronto dos resultados das entrevistas permite concluir que as conceções sobre a avaliação de desempenho dos docentes dos diferentes ciclos são semelhantes, mas o processo de avaliação e de supervisão foi vivido de forma distinta. O papel da supervisão na ADD depende, em larga escala, da competência dos avaliadores como supervisores e como professores e é facilitado pela existência prévia de uma cultura de colaboração entre docentes.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para a obtenção do Grau de Mestre em Ciências da Educação - especialidade Supervisão em Educação
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Administração e Gestão de Serviços de Saúde
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do grau de Mestre em Ciências da Educação - Especialização em Educação Especial, Domínio Cognição e Multideficiência
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Artística, na especialização de Teatro na Educação
Resumo:
Coronary artery disease (CAD) is currently one of the most prevalent diseases in the world population and calcium deposits in coronary arteries are one direct risk factor. These can be assessed by the calcium score (CS) application, available via a computed tomography (CT) scan, which gives an accurate indication of the development of the disease. However, the ionising radiation applied to patients is high. This study aimed to optimise the protocol acquisition in order to reduce the radiation dose and explain the flow of procedures to quantify CAD. The main differences in the clinical results, when automated or semiautomated post-processing is used, will be shown, and the epidemiology, imaging, risk factors and prognosis of the disease described. The software steps and the values that allow the risk of developingCADto be predicted will be presented. A64-row multidetector CT scan with dual source and two phantoms (pig hearts) were used to demonstrate the advantages and disadvantages of the Agatston method. The tube energy was balanced. Two measurements were obtained in each of the three experimental protocols (64, 128, 256 mAs). Considerable changes appeared between the values of CS relating to the protocol variation. The predefined standard protocol provided the lowest dose of radiation (0.43 mGy). This study found that the variation in the radiation dose between protocols, taking into consideration the dose control systems attached to the CT equipment and image quality, was not sufficient to justify changing the default protocol provided by the manufacturer.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Gestão Estratégica das Relações Públicas.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Artística, na especialização de Teatro na Educação
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do grau de Mestre em Educação Especial – ramo de Problemas de Cognição e Multideficiência
Resumo:
Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.
Resumo:
Relatório de estágio apresentado à Escola Superior de Educação de Lisboa para obtenção do grau de mestre em Ensino do 1.º e 2.º Ciclos do Ensino Básico
Resumo:
O presente trabalho tem como principal objectivo tentar conhecer e compreender as concepções educativas de um Centro de Actividades Ocupacionais face ao seu público-alvo em particular, as suas dimensões mais relevantes, os factores que as condicionam e os contextos que as limitam ou facilitam. Procurou-se conhecer as concepções e práticas dos actores educativos que intervêm na formação/educação junto de pessoas portadoras de deficiência mental adultas, clientes de um Centro de Actividades Ocupacionais, geograficamente situado em Lisboa. Para tal, elaborou-se um Estudo de Caso utilizando entrevistas semi estruturadas a sete profissionais do centro como técnica de recolha de dados, sendo estes posteriormente tratados através da análise de conteúdo. Assim, definiram-se como objectivos específicos do estudo: caracterizar as finalidades educativas do Centro de Actividades Ocupacionais; caracterizar as práticas de desenvolvimento para os adultos deficientes mentais; caracterizar o modo de participação dos clientes nas actividades: aspectos facilitadores e constrangimentos; identificar as dificuldades dos funcionários do Centro de Actividades Ocupacionais no atendimento aos clientes; caracterizar as iniciativas da instituição face à actualização profissional dos seus funcionários no sentido de fornecer respostas mais adequadas às necessidades dos clientes e, ainda, caracterizar de acordo com o ponto de vista dos actores educativos, a participação das famílias no processo de desenvolvimento dos clientes. Os resultados do estudo evidenciam que as actividades desenvolvidas no Centro de Actividades Ocupacionais se dividem entre as consideradas como socialmente úteis, como a montagem de material eléctrico, por exemplo, e as estritamente ocupacionais. Embora um dos objectivos do Centro de Actividades Ocupacionais seja a inserção do cliente na comunidade, da análise de dados ressalta que não existem muitas actividades que divulguem para o exterior o trabalho desenvolvido pelos adultos portadores de deficiência mental, promovendo pouca interacção dos indivíduos com a comunidade. As profissionais que participaram no estudo revelam motivação para trabalhar junto dos clientes e preocupação em melhorar o seu desempenho profissional, daí sentirem necessidade em adquirir formação contínua e partilhar experiências com outros profissionais. As famílias dos clientes são consideradas pelas participantes do estudo como sendo participativas no quotidiano do seu familiar, contudo existem factores que condicionam essa participação, como o envelhecimento dos progenitores. Abstract The present work aims to know and understand the educational conceptions of an Occupational Activities Center taking into consideration its target audience, particularly, its most relevant dimensions, the conditioning factors and its respective restrictive or facilitating contexts. The objective was to understand the concepts and daily practices of the educational actors that participate in the training/education of the mentally disabled adults who attend an Occupational Activities Center located in Lisbon. In that light, a Case Study was conducted using as the data collection technique semistructured interviews made to seven employees from the Center. This data was later on processed through content analysis. Thus, the following was defined as the study’s specific goals. To: characterize the educational purposes of the Occupational Activities Center; characterize development practices for the mentally disabled adults; characterize the clients’ participation process in the activities and the respective enabling and restrictive aspects; identify the Occupational Activities Center employees’ problems regarding client assistance; characterize the institution’s initiatives regarding the professional update of its employees in order to provide more adequate answers to its clients’ needs and, finally to identify from the educational actors’ perspective the participative role families’ take on when it comes to the clients’ development processes. The study results determine that the activities developed in the Occupational Activities Center are distinguished between the ones considered socially useful, such as the assembly of electric material, and the strictly occupational activities. Although one of the Occupational Activities Center goals is the insertion of the client within the community itself, the data analysis shows that there aren’t many activities that promote to the outside world the work performed by these mentally disabled adults, not advertising enough the individuals’ interaction with the community. The professional women who participated in the study show determination and motivation in working with the clients and also a concern in improving their professional performances, from this derives their need to attend continuous training and to share experiences with other professionals. The study's participants find the clients’ families involved in the daily routines of their relatives. Nonetheless, there are some factors that condition that involvement, such as the parents’ aging.
Resumo:
O presente trabalho teve como principal objectivo o desenvolvimento de um analisador de vibrações de dois canais baseado em computador, para a realização de diagnóstico no âmbito do controlo de condição de máquinas. Foi desenvolvida uma aplicação num computador comum, no software LabVIEW, que através de transdutores de aceleração do tipo MEMS conectados via USB, faz a recolha de dados de vibração e procede ao seu processamento e apresentação ao utilizador. As ferramentas utilizadas para o processamento de dados são ferramentas comuns encontradas em vários analisadores de vibrações disponíveis no mercado. Estas podem ser: gráficos de espectro de frequência, sinal no tempo, cascata ou valores de nível global de vibração, entre outras. Apesar do analisador desenvolvido não apresentar inovação nas ferramentas de análise adoptadas, este pretende ser distinguido pelo baixo custo, simplicidade e carácter didáctico. Este trabalho vem evidenciar as vantagens, desvantagens e potencialidades de um analisador desta natureza. São tiradas algumas conclusões quanto à sua capacidade de diagnóstico de avarias, capacidades como ferramenta didáctica, sensores utilizados e linguagem de programação escolhida. Como conclusões principais, o trabalho revela que os sensores escolhidos não são os indicados para efectuar o diagnóstico de avarias em ambiente industrial, contudo são ideais para tornar este analisador numa boa ferramenta didáctica e de treino.