57 resultados para Constraints-led approach
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This paper is on the problem of short-term hydro, scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach.
Resumo:
In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper is on the maximization of total profit in a day-ahead market for a price-taker producer needing a short-term scheduling for wind power plants coordination with concentrated solar power plants, having thermal energy storage systems. The optimization approach proposed for the maximization of profit is a mixed-integer linear programming problem. The approach considers not only transmission grid constraints, but also technical operating constraints on both wind and concentrated solar power plants. Then, an improved short-term scheduling coordination is provided due to the more accurate modelling presented in this paper. Computer simulation results based on data for the Iberian wind and concentrated solar power plants illustrate the coordination benefits and show the effectiveness of the approach.
Resumo:
This paper is on the self-scheduling for a power producer taking part in day-ahead joint energy and spinning reserve markets and aiming at a short-term coordination of wind power plants with concentrated solar power plants having thermal energy storage. The short-term coordination is formulated as a mixed-integer linear programming problem given as the maximization of profit subjected to technical operation constraints, including the ones related to a transmission line. Probability density functions are used to model the variability of the hourly wind speed and the solar irradiation in regard to a negative correlation. Case studies based on an Iberian Peninsula wind and concentrated solar power plants are presented, providing the optimal energy and spinning reserve for the short-term self-scheduling in order to unveil the coordination benefits and synergies between wind and solar resources. Results and sensitivity analysis are in favour of the coordination, showing an increase on profit, allowing for spinning reserve, reducing the need for curtailment, increasing the transmission line capacity factor. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper is on the maximization of total profit in a day-ahead market for a price-taker producer needing a short-term scheduling for wind power plants coordination with concentrated solar power plants, having thermal energy storage systems. The optimization approach proposed for the maximization of profit is a mixed-integer linear programming problem. The approach considers not only transmission grid constraints, but also technical operating constraints on both wind and concentrated solar power plants. Then, an improved short-term scheduling coordination is provided due to the more accurate modelling presented in this paper. Computer simulation results based on data for the Iberian wind and concentrated solar power plants illustrate the coordination benefits and show the effectiveness of the approach.
Resumo:
The purpose of this paper is to discuss the linear solution of equality constrained problems by using the Frontal solution method without explicit assembling. Design/methodology/approach - Re-written frontal solution method with a priori pivot and front sequence. OpenMP parallelization, nearly linear (in elimination and substitution) up to 40 threads. Constraints enforced at the local assembling stage. Findings - When compared with both standard sparse solvers and classical frontal implementations, memory requirements and code size are significantly reduced. Research limitations/implications - Large, non-linear problems with constraints typically make use of the Newton method with Lagrange multipliers. In the context of the solution of problems with large number of constraints, the matrix transformation methods (MTM) are often more cost-effective. The paper presents a complete solution, with topological ordering, for this problem. Practical implications - A complete software package in Fortran 2003 is described. Examples of clique-based problems are shown with large systems solved in core. Social implications - More realistic non-linear problems can be solved with this Frontal code at the core of the Newton method. Originality/value - Use of topological ordering of constraints. A-priori pivot and front sequences. No need for symbolic assembling. Constraints treated at the core of the Frontal solver. Use of OpenMP in the main Frontal loop, now quantified. Availability of Software.
Resumo:
This paper is on the self-scheduling problem for a thermal power producer taking part in a pool-based electricity market as a price-taker, having bilateral contracts and emission-constrained. An approach based on stochastic mixed-integer linear programming approach is proposed for solving the self-scheduling problem. Uncertainty regarding electricity price is considered through a set of scenarios computed by simulation and scenario-reduction. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. A requirement on emission allowances to mitigate carbon footprint is modelled by a stochastic constraint. Supply functions for different emission allowance levels are accessed in order to establish the optimal bidding strategy. A case study is presented to illustrate the usefulness and the proficiency of the proposed approach in supporting biding strategies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The main purpose of this research is to identify the hidden knowledge and learning mechanisms in the organization in order to disclosure the tacit knowledge and transform it into explicit knowledge. Most firms usually tend to duplicate their efforts acquiring extra knowledge and new learning skills while forgetting to exploit the existing ones thus wasting one life time resources that could be applied to increase added value within the firm overall competitive advantage. This unique value in the shape of creation, acquisition, transformation and application of learning and knowledge is not disseminated throughout the individual, group and, ultimately, the company itself. This work is based on three variables that explain the behaviour of learning as the process of construction and acquisition of knowledge, namely internal social capital, technology and external social capital, which include the main attributes of learning and knowledge that help us to capture the essence of this symbiosis. Absorptive Capacity provides the right tool to explore this uncertainty within the firm it is possible to achieve the perfect match between learning skills and knowledge needed to support the overall strategy of the firm. This study has taken in to account a sample of the Portuguese textile industry and it is based on a multisectorial analysis that makes it possible a crossfunctional analysis to check on the validity of results in order to better understand and capture the dynamics of organizational behavior.
Resumo:
The main purpose of this research is to identify the hidden knowledge and learning mechanisms in the organization in order to disclosure the tacit knowledge and transform it into explicit knowledge. Most firms usually tend to duplicate their efforts acquiring extra knowledge and new learning skills while forgetting to exploit the existing ones thus wasting one life time resources that could be applied to increase added value within the firm overall competitive advantage. This unique value in the shape of creation, acquisition, transformation and application of learning and knowledge is not disseminated throughout the individual, group and, ultimately, the company itself. This work is based on three variables that explain the behaviour of learning as the process of construction and acquisition of knowledge, namely internal social capital, technology and external social capital, which include the main attributes of learning and knowledge that help us to capture the essence of this symbiosis. Absorptive Capacity provides the right tool to explore this uncertainty within the firm it is possible to achieve the perfect match between learning skills and knowledge needed to support the overall strategy of the firm. This study has taken in to account a sample of the Portuguese textile industry and it is based on a multisectorial analysis that makes it possible a crossfunctional analysis to check on the validity of results in order to better understand and capture the dynamics of organizational behavior.
Resumo:
An education promoting scientific literacy (SL) that prepares the citizens to a responsible citizenship has persisted as an argument across discussions on curricula design. The ubiquity of science and technology on contemporary societies and the ideological requirement of informed democratic participation led to the identification of relevant categories that drive curriculum reforms towards a humanistic approach of school science. The category ‘Science as culture’ acquires in the current work a major importance: it enlightens the meaning of scientific literacy. Looking closely to the French term, culture scientifique et tecnologique, turns science simultaneously into a cultural object and product that can be both received and worked at different levels and within several approaches by the individuals and the communities. On the other hand, nonformal and informal education spaces gain greater importance. Together with the formal school environment these spaces allow for an enrichment and diversification of learning experiences. Examples of nonformal spaces where animators can develop their work may be science museums or botanical gardens; television and internet can be regarded as informal education spaces. Due to the above mentioned impossibility of setting apart the individual or community-based experiences from Science and Technology (S&T), the work in nonformal and informal spaces sets an additional challenge to the preparation of socio-cultural animators. Socio-scientific issues take, at times, heavily relevance within the communities. Pollution, high tension lines, spreading of diseases, food contamination or natural resources conservation are among the socio-scientific issues that often call upon arguments and emotions. In the context of qualifying programmes on socio-cultural animation (social education and community development) within European Higher Education Area (EHEA) the present study describes the Portuguese framework. The comparison of programmes within Portugal aims to contribute to the discussion on the curriculum design for a socio-cultural animator degree (1st cycle of Bologna process). In particular, this study intends to assess how the formation given complies with enabling animators to work, within multiple scenarios, with communities in situations of socio-scientific relevance. A set of themes, issues and both current and potential fields of action, not described or insufficiently described in literature, is identified and analysed in the perspective of a qualified intervention of animators. One of these examples is thoroughly discussed. Finally, suggestions are made about curriculum reforms in order, if possible, to strongly link the desired qualified intervention with a qualifying formation.
Resumo:
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.
Resumo:
In this paper, a mixed-integer nonlinear approach is proposed to support decision-making for a hydro power producer, considering a head-dependent hydro chain. The aim is to maximize the profit of the hydro power producer from selling energy into the electric market. As a new contribution to earlier studies, a risk aversion criterion is taken into account, as well as head-dependency. The volatility of the expected profit is limited through the conditional value-at-risk (CVaR). The proposed approach has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems.
Resumo:
Mesoporous carbon materials were prepared through template method approach using porous clay heterostructures (PCHs) as matrix and furfuryl alcohol as carbon precursor. Three PCHs prepared using amines with 8, 10 and 12 carbon atoms were used. The effect of several impregnation-polymerization cycles of the carbon precursor, the carbonization temperature and the need of a previous surface alumination were evaluated. The presence of two porosity domains was identified in all the carbon materials. These two domains comprise pores resulting from the carbonization of the polymer film formed in the inner structure of the PCH (domain I) and larger pores created by the clay particles aggregation (domain II). The predominance of the porosity associated to domain I or II can be achieved by choosing a specific amine to prepare the PCH matrix. Carbonization at 700 C led to the highest development of pores of domain I. In general, the second impregnation-polymerization cycle of furfuryl alcohol resulted in a small decrease of both types of porosity domains. Furthermore the previous acidification of the surface to create acidic sites proved to be unnecessary. The results showed the potential of PCHs as matrices to tailor the textural properties of carbons prepared by template mediated synthesis.
Resumo:
We write down the renormalization-group equations for the Yukawa-coupling matrices in a general multi-Higgs-doublet model. We then assume that the matrices of the Yukawa couplings of the various Higgs doublets to right-handed fermions of fixed quantum numbers are all proportional to each other. We demonstrate that, in the case of the two-Higgs-doublet model, this proportionality is preserved by the renormalization-group running only in the cases of the standard type-I, II, X, and Y models. We furthermore show that a similar result holds even when there are more than two Higgs doublets: the Yukawa-coupling matrices to fermions of a given electric charge remain proportional under the renormalization-group running if and only if there is a basis for the Higgs doublets in which all the fermions of a given electric charge couple to only one Higgs doublet.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning head-dependent reservoirs under competitive environment. We propose a novel method, based on mixed-integer nonlinear programming (MINLP), for optimising power generation efficiency. This method considers hydroelectric power generation as a nonlinear function of water discharge and of the head. The main contribution of this paper is that discharge ramping constraints and start/stop of units are also considered, in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve two case studies based on Portuguese cascaded hydro systems, providing a higher profit at an acceptable computation time in comparison with classical optimisation methods based on mixed-integer linear programming (MILP).