6 resultados para Complexity of Relations
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The phenomenon of aging is nowadays society as acquired the status of a social problem, with growing attention and concern, leading to an increase number of studies dedicated to the elderly. The lack of domestic, familiar or social support often lead elderly to nursing homes. Institutionalization is in many cases the only opportunity to have access to health care and life quality. Aging is also associated with a higher prevalence of chronic diseases that require long term medication sometimes for life. Frequently the onset of multiple pathologies at the same time require different therapies and the phenomenon of polypharmacy (five ou more drugs daily) can occur. Even more, the slow down of physiological and cognitives mechanisms associated with these chronic diseases can interphere, in one hand, with the pharmacocinetic of many medications and, on the other hand, with the facility to accomplish the therapeutical regimen. All of these realities contribute to an increase of pharmacotherapeutical complexity, decreasing the adherence and effectiveness of treatment. The pharmacotherapeutical complexity of an individual is characterized by the conciliator element of different characteristics of their drug therapy, such as: the number of medications used; dosage forms; dosing frequency and additional indications. It can be measured by the Medication Regimen Complexity Index (MRCI), originally validated in English.
Resumo:
Nowadays, the phenomenon of population ageing represents an worldwide problem, which assumes particular significance in Portugal. As they get older, individuals present more comorbidities and consequently consume an increasing number of drugs, which contributes to a growing drug therapy complexity. The institutionalized elders are particularly affected by this occurrence. Drug therapy complexity is defined as the conciliator of several characteristics of the pharmacotherapy and can affect patient’s safety and medication adherence. It can be measured with Medication Regimen Complexity Index (MRCI). This study aims to determine the drug therapy complexity of institutionalized elders in order to assess the need of pharmacotherapeutic follow-up.
Resumo:
The study of economic systems has generated deep interest in exploring the complexity of chaotic motions in economy. Due to important developments in nonlinear dynamics, the last two decades have witnessed strong revival of interest in nonlinear endogenous business chaotic models. The inability to predict the behavior of dynamical systems in the presence of chaos suggests the application of chaos control methods, when we are more interested in obtaining regular behavior. In the present article, we study a specific economic model from the literature. More precisely, a system of three ordinary differential equations gather the variables of profits, reinvestments and financial flow of borrowings in the structure of a firm. Firstly, using results of symbolic dynamics, we characterize the topological entropy and the parameter space ordering of kneading sequences, associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The analysis of the variation of this numerical invariant, in some realistic system parameter region, allows us to quantify and to distinguish different chaotic regimes. Finally, we show that complicated behavior arising from the chaotic firm model can be controlled without changing its original properties and the dynamics can be turned into the desired attracting time periodic motion (a stable steady state or into a regular cycle). The orbit stabilization is illustrated by the application of a feedback control technique initially developed by Romeiras et al. [1992]. This work provides another illustration of how our understanding of economic models can be enhanced by the theoretical and numerical investigation of nonlinear dynamical systems modeled by ordinary differential equations.
Resumo:
A presente investigação procurou descrever, de forma exaustiva, o processo de previsão, negociação, implementação e avaliação do Contrato de Execução celebrado entre a Câmara Municipal de Sintra e o Ministério da Educação em 2009. Este contrato corresponde a um instrumento previsto na regulamentação do quadro de transferências de competências para os municípios em matéria de educação, de acordo com o regime previsto no Decreto-Lei n.º 144/2008, de 28 de julho. Definida a problemática e os objetivos, a investigação centrou-se num estudo de caso no qual foi feita a descrição e interpretação do processo e das ações desenvolvidas pelos intervenientes no período compreendido entre 2008 e 2011. Recorreu-se à confrontação dos dados obtidos através da análise das fontes documentais e do recurso às entrevistas realizadas aos responsáveis pelo Pelouro da Educação e diretores dos Agrupamentos de Escolas, à luz da revisão da literatura e do contributo de diferentes trabalhos de investigadores nesta matéria. A investigação permitiu concluir que o processo de contratualização foi algo complexo face à realidade deste Município e que o normativo apresenta várias lacunas no que diz respeito à contratualização da referida transferência de competências, designadamente porque procura generalizar algo que não é, de todo, generalizável – o campo da educação face à complexidade dos territórios educativos em causa e aos dos intervenientes envolvidos no mesmo.
Resumo:
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações