6 resultados para Clustering a large document collection

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relevant past events can be remembered when visualizing related pictures. The main difficulty is how to find these photos in a large personal collection. Query definition and image annotation are key issues to overcome this problem. The former is relevant due to the diversity of the clues provided by our memory when recovering a past moment and the later because images need to be annotated with information regarding those clues to be retrieved. Consequently, tools to recover past memories should deal carefully with these two tasks. This paper describes a user interface designed to explore pictures from personal memories. Users can query the media collection in several ways and for this reason an iconic visual language to define queries is proposed. Automatic and semi-automatic annotation is also performed using the image content and the audio information obtained when users show their images to others. The paper also presents the user interface evaluation based on tests with 58 participants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of large area single layers and heterojunction cells in the assembly glass/ZnO:Al/p (SixC1-x:H)/i (Si:H)/n (SixC1-x:H)/Al (0

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of large area single layers and glass/ZnO:AVp(SixC1-x:H)/i(Si:H)/n(SixC1-x:H)/AI (0 < x < 1) heterojunction cells were produced by plasma-enhanced chemical vapour deposition (PE-CVD) at low temperature. Junction properties, carrier transport and photogeneration are investigated from dark and illuminated current-voltage (J-V) and capacitance-voltage (C-V) characteristics. For the heterojunction cells atypical J-V characteristics under different illumination conditions are observed leading to poor fill factors. High series resistances around 106 Q are also measured. These experimental results were used as a basis for the numerical simulation of the energy band diagram, and the electrical field distribution of the structures. Further comparison with the sensor performance gave satisfactory agreement. Results show that the conduction band offset is the most limiting parameter for the optimal collection of the photogenerated carriers. As the optical gap increases and the conductivity of the doped layers decreases, the transport mechanism changes from a drift to a diffusion-limited process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clustering ensemble methods produce a consensus partition of a set of data points by combining the results of a collection of base clustering algorithms. In the evidence accumulation clustering (EAC) paradigm, the clustering ensemble is transformed into a pairwise co-association matrix, thus avoiding the label correspondence problem, which is intrinsic to other clustering ensemble schemes. In this paper, we propose a consensus clustering approach based on the EAC paradigm, which is not limited to crisp partitions and fully exploits the nature of the co-association matrix. Our solution determines probabilistic assignments of data points to clusters by minimizing a Bregman divergence between the observed co-association frequencies and the corresponding co-occurrence probabilities expressed as functions of the unknown assignments. We additionally propose an optimization algorithm to find a solution under any double-convex Bregman divergence. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of objects in a same cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE) algorithm is a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix based on a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters. In this paper we extend the PEACE algorithm by deriving a consensus solution according to a MAP approach with Dirichlet priors defined for the unknown probabilistic cluster assignments. In particular, we study the positive regularization effect of Dirichlet priors on the final consensus solution with both synthetic and real benchmark data.