45 resultados para Amorphous
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We report a field-effect phototransistor with a channel comprising a thin nanocrystalline silicon transport layer and a thicker hydrogenated amorphous silicon absorption layer. The semiconductor and dielectric layers were deposited by radio-frequency plasma enhanced chemical vapor deposition. The phototransistor with channel length of 24 microns and photosensitive area of 1.4 mm(2) shows an off-current of about 1 pA, and high photoconductive gain in the subthreshold region. Measurements of the quantum efficiency at different incident light intensities and biasing conditions, along with spectral-response characteristics, and threshold voltage stability characterization demonstrate the feasibility of the phototransistor for low light level detection.
Resumo:
Large area hydrogenated amorphous silicon single and stacked p-i-n structures with low conductivity doped layers are proposed as monochrome and color image sensors. The layers of the structures are based on amorphous silicon alloys (a-Si(x)C(1-x):H). The current-voltage characteristics and the spectral sensitivity under different bias conditions are analyzed. The output characteristics are evaluated under different read-out voltages and scanner wavelengths. To extract information on image shape, intensity and color, a modulated light beam scans the sensor active area at three appropriate bias voltages and the photoresponse in each scanning position ("sub-pixel") is recorded. The investigation of the sensor output under different scanner wavelengths and varying electrical bias reveals that the response can be tuned, thus enabling color separation. The operation of the sensor is exemplified and supported by a numerical simulation.
Resumo:
Toxic amides, such as acrylamide, are potentially harmful to Human health, so there is great interest in the fabrication of compact and economical devices to measure their concentration in food products and effluents. The CHEmically Modified Field Effect Transistor (CHEMFET) based onamorphous silicon technology is a candidate for this type of application due to its low fabrication cost. In this article we have used a semi-empirical modelof the device to predict its performance in a solution of interfering ions. The actual semiconductor unit of the sensor was fabricated by the PECVD technique in the top gate configuration. The CHEMFET simulation was performed based on the experimental current voltage curves of the semiconductor unit and on an empirical model of the polymeric membrane. Results presented here are useful for selection and design of CHEMFET membranes and provide an idea of the limitations of the amorphous CHEMFET device. In addition to the economical advantage, the small size of this prototype means it is appropriate for in situ operation and integration in a sensor array.
Resumo:
Amorphous Si/SiC photodiodes working as photo-sensing or wavelength sensitive devices have been widely studied. In this paper single and stacked a-SiC:H p-i-n devices, in different geometries and configurations, are reviewed. Several readout techniques, depending on the desired applications (image sensor, color sensor, wavelength division multiplexer/demultiplexer device) are proposed. Physical models are presented and supported by electrical and numerical simulations of the output characteristics of the sensors.
Resumo:
This letter reports a near-ultraviolet/visible/near-infrared n(+)-n-i-delta(i)-p photodiode with an absorber comprising a nanocrystalline silicon n layer and a hydrogenated amorphous silicon i layer. Device modeling reveals that the dominant source of reverse dark current is deep defect states in the n layer, and its magnitude is controlled by the i layer thickness. The photodiode with the 900/400 nm thick n-i layers exhibits a reverse dark current density of 3nA/cm(2) at -1V. Donor concentration and diffusion length of holes in the n layer are estimated from the capacitance-voltage characteristics and from the bias dependence of long-wavelength response, respectively. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660725]
Resumo:
This paper discusses the photodiode capacitance dependence on imposed light and applied voltage using different devices. The first device is a double amorphous silicon pin-pin photodiode; the second one a crystalline pin diode and the last one a single pin amorphous silicon diode. Double amorphous silicon diodes can be used as (de)multiplexer devices for optical communications. For short range applications, using plastic optical fibres, the WDM (wavelength-division multiplexing) technique can be used in the visible light range to encode multiple signals. Experimental results consist on measurements of the photodiode capacitance under different conditions of imposed light and applied voltage. The relation between the capacitive effects of the double diode and the quality of the semiconductor internal junction will be analysed. The dynamics of charge accumulations will be measured when the photodiode is illuminated by a pulsed monochromatic light.
Resumo:
Agências Financiadoras: Fundação para a Ciência e a Tecnologia - PTDC/FIS/102127/2008 e PTDC/FIS/102127/2008 e SFRH/BPD/78871/2011; Spanish Ministerio de Ciencia e Innovacion - FUNCOAT-CSD2008-00023-CONSOLIDER; Instituto Superior Técnico;
Resumo:
Solar cells on lightweight and flexible substrates have advantages over glass-or wafer-based photovoltaic devices in both terrestrial and space applications. Here, we report on development of amorphous silicon thin film photovoltaic modules fabricated at maximum deposition temperature of 150 degrees C on 100 mu m thick polyethylene-naphtalate plastic films. Each module of 10 cm x 10 cm area consists of 72 a-Si:H n-i-p rectangular structures with transparent conducting oxide top electrodes with Al fingers and metal back electrodes deposited through the shadow masks. Individual structures are connected in series forming eight rows with connection ports provided for external blocking diodes. The design optimization and device performance analysis are performed using a developed SPICE model.
Resumo:
This article reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160 degrees C and 24 h. A band gap of 3.06 +/- 0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 min of irradiation of a 10 ppm dye aqueous solution and 1 g L-1 of TNS catalyst.
Resumo:
This work reports a theoretical study aimed to identify the plasmonic resonance condition for a system formed by metallic nanoparticles embedded in an a-Si: H matrix. The study is based on a Tauc-Lorentz model for the electrical permittivity of a-Si: H and a Drude model for the metallic nanoparticles. It is calculated the The polarizability of an sphere and ellipsoidal shaped metal nanoparticles with radius of 20 nm. We also performed FDTD simulations of light propagation inside this structure reporting a comparison among the effects caused by a single nanoparticles of Aluminium, Silver and, as a comparison, an ideally perfectly conductor. The simulation results shows that is possible to obtain a plasmonic resonance in the red part of the spectrum (600-700 nm) when 20-30 nm radius Aluminium ellipsoids are embedded into a-Si: H.
Resumo:
We present results, obtained by means of an analytic study and a numerical simulation, about the resonant condition necessary to produce a Localized Surface Plasmonic Resonance (LSPR) effect at the surface of metal nanospheres embedded in an amorphous silicon matrix. The study is based on a Lorentz dispersive model for a-Si:H permittivity and a Drude model for the metals. Considering the absorption spectra of a-Si:H, the best choice for the metal nanoparticles appears to be aluminium, indium or magnesium. No difference has been observed when considering a-SiC:H. Finite-difference time-domain (FDTD) simulation of an Al nanosphere embedded into an amorphous silicon matrix shows an increased scattering radius and the presence of LSPR induced by the metal/semiconductor interaction under green light (560 nm) illumination. Further results include the effect of the nanoparticles shape (nano-ellipsoids) in controlling the wavelength suitable to produce LSPR. It has been shown that is possible to produce LSPR in the red part of the visible spectrum (the most critical for a-Si:H solar cells applications in terms of light absorption enhancement) with aluminium nano-ellipsoids. As an additional results we may conclude that the double Lorentz-Lorenz model for the optical functions of a-Si:H is numerically stable in 3D simulations and can be used safely in the FDTD algorithm. A further simulation study is directed to determine an optimal spatial distribution of Al nanoparticles, with variable shapes, capable to enhance light absorption in the red part of the visible spectrum, exploiting light trapping and plasmonic effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We examine the instability behavior of nanocrystalline silicon (nc-Si) thin-film transistors (TFTs) in the presence of electrical and optical stress. The change in threshold voltage and sub-threshold slope is more significant under combined bias-and-light stress when compared to bias stress alone. The threshold voltage shift (Delta V-T) after 6 h of bias stress is about 7 times larger in the case with illumination than in the dark. Under bias stress alone, the primary instability mechanism is charge trapping at the semiconductor/insulator interface. In contrast, under combined bias-and-light stress, the prevailing mechanism appears to be the creation of defect states in the channel, and believed to take place in the amorphous phase, where the increase in the electron density induced by electrical bias enhances the non-radiative recombination of photo-excited electron-hole pairs. The results reported here are consistent with observations of photo-induced efficiency degradation in solar cells.
Resumo:
In this paper we present an amorphous silicon device that can be used in two operation modes to measure the concentration of ions in solution. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use, for example, in the food industry. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the device can be operated in a light-assisted mode, where changes in the pH produce changes on the measured ac photocurrent. In alternative the device can be operated as a conventional ion selective field effect device where changes in the pH induce changes in the transistor's threshold voltage.
Resumo:
Este trabalho utiliza uma estrutura pin empilhada, baseada numa liga de siliceto de carbono amorfo hidrogenado (a-Si:H e/ou a-SiC:H), que funciona como filtro óptico na zona visível do espectro electromagnético. Pretende-se utilizar este dispositivo para realizar a demultiplexagem de sinais ópticos e desenvolver um algoritmo que permita fazer o reconhecimento autónomo do sinal transmitido em cada canal. O objectivo desta tese visa implementar um algoritmo que permita o reconhecimento autónomo da informação transmitida por cada canal através da leitura da fotocorrente fornecida pelo dispositivo. O tema deste trabalho resulta das conclusões de trabalhos anteriores, em que este dispositivo e outros de configuração idêntica foram analisados, de forma a explorar a sua utilização na implementação da tecnologia WDM. Neste trabalho foram utilizados três canais de transmissão (Azul – 470 nm, Verde – 525 nm e Vermelho – 626 nm) e vários tipos de radiação de fundo. Foram realizadas medidas da resposta espectral e da resposta temporal da fotocorrente do dispositivo, em diferentes condições experimentais. Variou-se o comprimento de onda do canal e o comprimento de onda do fundo aplicado, mantendo-se constante a intensidade do canal e a frequência de transmissão. Os resultados obtidos permitiram aferir sobre a influência da presença da radiação de fundo e da tensão aplicada ao dispositivo, usando diferentes sequências de dados transmitidos nos vários canais. Verificou-se, que sob polarização inversa, a radiação de fundo vermelho amplifica os valores de fotocorrente do canal azul e a radiação de fundo azul amplifica o canal vermelho e verde. Para polarização directa, apenas a radiação de fundo azul amplifica os valores de fotocorrente do canal vermelho. Enquanto para ambas as polarizações, a radiação de fundo verde, não tem uma grande influência nos restantes canais. Foram implementados dois algoritmos para proceder ao reconhecimento da informação de cada canal. Na primeira abordagem usou-se a informação contida nas medidas de fotocorrente geradas pelo dispositivo sob polarização inversa e directa. Pela comparação das duas medidas desenvolveu-se e testou-se um algoritmo que permite o reconhecimento dos canais individuais. Numa segunda abordagem procedeu-se ao reconhecimento da informação de cada canal mas com aplicação de radiação de fundo, tendo-se usado a informação contida nas medidas de fotocorrente geradas pelo dispositivo sob polarização inversa sem aplicação de radiação de fundo com a informação contida nas medidas de fotocorrente geradas pelo dispositivo sob polarização inversa com aplicação de radiação de fundo. Pela comparação destas duas medidas desenvolveu-se e testou-se o segundo algoritmo que permite o reconhecimento dos canais individuais com base na aplicação de radiação de fundo.
Resumo:
A two terminal optically addressed image processing device based on two stacked sensing/switching p-i-n a-SiC:H diodes is presented. The charge packets are injected optically into the p-i-n sensing photodiode and confined at the illuminated regions changing locally the electrical field profile across the p-i-n switching diode. A red scanner is used for charge readout. The various design parameters and addressing architecture trade-offs are discussed. The influence on the transfer functions of an a-SiC:H sensing absorber optimized for red transmittance and blue collection or of a floating anode in between is analysed. Results show that the thin a-SiC:H sensing absorber confines the readout to the switching diode and filters the light allowing full colour detection at two appropriated voltages. When the floating anode is used the spectral response broadens, allowing B&W image recognition with improved light-to-dark sensitivity. A physical model supports the image and colour recognition process.