14 resultados para Algal Biodiesel
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
O consumo de energia é um requisito fundamental para a existência humana. Grande parte da energia é gerada a partir de combustíveis fósseis. Os problemas ambientais e a instabilidade dos mercados de crude, agravados pela conscencialização de que as reservas de crude são finitas, motivaram a procura de combustíveis alternativos. Entre os vários estudados, o biodiesel é apontado como uma alternativa viável ao diesel de origem fóssil por apresentar propriedades de combustão similares. O biodiesel apresenta um balanço de carbono praticamente nulo sendo por isso visto como uma arma na batalha contra o aquecimento global. O biodiesel compreende uma mistura de mono-ésteres alquílicos de ácidos gordos de cadeia longa. A transesterificação ou esterificação de óleos vegetais ou gorduras animais, com um álcool de baixo peso molecular (metanol ou etanol) é o principal processo usado para produzir biodiesel. Presentemente os processos industriais usam catalisadores homogéneos em processos. No entanto, os catalisadores heterogéneos têm surgido como promissores para a produção de biodiesel, já que são ambientalmente benignos e podem ser regenerados e reutilizados. Deste modo, a catálise heterogénea torna a produção de biodiesel potencialmente mais barata, permitindo a utilização em processos contínuos. Neste contexto, foram preparados e testados, na metanólise de óleo de soja, vários catalisadores heterogéneos básicos. Os melhores desempenhos catalíticos foram obtidos utilizando catalisadores sólidos preparados por deposição de SrO sobre MgO (razão atómica Sr/Mg entre 0.05 e 0.35). Os catalisadores com razão atómica Sr/Mg superior a 0.10 permitem obter um rendimento em ésteres metílicos superior a 90%, para a temperatura de refluxo do metanol. Os resultados das diferentes técnicas de caracterização mostraram que a temperatura de calcinação tem uma forte influência sobre o comportamento catalítico. Para temperaturas de calcinação inferiores a 625 ºC o carbonato de estrôncio permanece na superfície dos catalisadores. A solubilidade desta espécie no meio reaccional, principalmente no metanol, promove a rápida lixiviação do estrôncio e assim a desactivação do catalisador. A fim de optimizar a produção de biodiesel, foi estudado o efeito de vários parametros do processo tais como a temperatura da reacção, a razão molar metanol/óleo, razão mássica catalisador/óleo e o tempo de reação. Este estudo incluiu igualmente a estabilidade dos catalisadores.
Resumo:
This paper describes experimental work done towards the search for more profitable and sustainable alternatives regarding biodiesel production, using heterogeneous catalysts instead of the conventional homogenous alkaline catalysts, such as NaOH, KOH or sodium methoxide, for the methanolysis reaction. This experimental work is a first stage on the development and optimization of new solid catalysts, able to produce biodiesel from vegetable oils. The heterogeneous catalytic process has many differences from the currently used in industry homogeneous process. The main advantage is that, it requires lower investment costs, since no need for separation steps of methanol/catalyst, biodiesel/catalyst and glycerine/catalyst. This work resulted in the selection of CaO and CaO modified with Li catalysts, which showed very good catalytic performances with high activity and stability. In fact FAME yields higher than 92% were observed in two consecutive reaction batches without expensive intermediate reactivation procedures. Therefore, those catalysts appear to be suitable for biodiesel production.
Resumo:
A produção de energia a partir de fontes renováveis tornou-se num objectivo essencial para a sustentabilidade económica, social e ambiental do mundo actual. O biodiesel é uma dessas fontes renováveis que pode substituir o diesel fóssil. A principal via de produção do biodiesel é através de uma reacção de transesterificação de óleos vegetais, óleos alimentares usados ou gorduras animais por reacção com um álcool na presença de um catalisador alcalino. Contudo, a utilização de matérias-primas com um teor em ácidos gordos livres superior a cerca de 4% (8mg KOH/g óleo) inviabiliza a possibilidade de efectuar directamente a reacção de transesterificação básica das gorduras e obriga à realização de um pré-tratamento para redução da acidez inicial da amostra. Assim, este trabalho teve como principal objectivo estudar a possibilidade de produzir diesel a partir de matérias-primas alternativas como as gorduras vegetais com elevados teores em ácidos gordos livres após esterificação com glicerina e uma gordura animal de baixa acidez, conseguindo-se assim a valorização de um resíduo e ao mesmo tempo a diminuição do custo de produção do biodiesel. Após ensaios preliminares, a esterificação com glicerina foi estudada aplicando a metodologia do planeamento factorial dos ensaios. Nos ensaios preliminares foi analisado o efeito da temperatura, da percentagem de catalisador, da velocidade de agitação, da percentagem de excesso de glicerina e do tipo de catalisador na acidez da amostra. Os resultados obtidos mostraram que é possível reduzir o índice de acidez de 30% (60 mg KOH/g gordura) para 8% (4 mg KOH/g gordura) trabalhando a 220° C, 10% de excesso de glicerina e 0,2% de catalisador (zinco) em apenas 90 minutos de reacção. A transesterificação básica do produto obtido na esterificação com glicerina não permitiu produzir um biodiesel que cumprisse a Norma Europeia de qualidade do biodiesel no que diz respeito à pureza, acidez e teor em água. De facto, nas condições mais favoráveis, que corresponderam à utilização da razão molar de metanol/gordura de 12:1 e 1% de catalisador, foi possível produzir um biodiesel com um teor em ésteres metílicos de 94.7% e 1.1% de ácidos gordos livres. Por último, os ensaios de transesterificação com a gordura animal mostraram que estas gorduras são uma matéria-prima com grandes potencialidades para serem utilizadas na produção de biodiesel. Assim, utilizando condições operatórias idênticas às utilizadas para os óleos virgens (0.6% de metóxido de sódio catalisador e uma razão molar de metanol de 6:1) foi possível produzir em apenas 30 minutos de reacção um biodiesel com um teor em ésteres superior a 98%.
Resumo:
O objectivo do presente trabalho foi desenvolver, implementar e validar métodos de determinação de teor de cálcio (Ca), magnésio (Mg), sódio (Na), potássio (K) e fósforo (P) em biodiesel, por ICP-OES. Este método permitiu efectuar o controlo de qualidade do biodiesel, com a vantagem de proporcionar uma análise multi-elementar, reflectindo-se numa diminuição do tempo de análise. Uma vez que o biodiesel é uma das principais fontes de energia renovável e alternativa ao diesel convencional, este tipo de análises revela-se extremamente útil para a sua caracterização. De acordo com a análise quantitativa e qualitativa e após a validação dos respectivos ensaios, apresentam-se, na Tabela 1 as condições optimizadas para cada elemento em estudo. As condições de trabalho do ICP-OES foram escolhidas tendo em conta as características do elemento em estudo, o tipo de equipamento utilizado para a sua análise, e de modo a obter a melhor razão sinal/intensidade de fundo. Para a validação dos ensaios foram efectuados ensaios de recuperação, determinados limites de detecção e quantificação, ensaios de repetibilidade e reprodutibilidade, e verificação das curvas de calibração. Na tabela 2 apresentam-se os comprimentos de onda escolhidos (livres de interferências) e respectivos limites de detecção e quantificação dos elementos analisados por ICP-OES, na posição radial e radial atenuado.
Resumo:
A transesterificação de óleos vegetais ou gorduras animais com um álcool de baixo peso molecular é o principal processo utilizado na produção de biodiesel. Actualmente os processos industriais utilizam catalisadores homogéneos para acelerar a reacção. No entanto a utilização de catalisadores heterogéneos, no processo de transesterificação, tem sido sugerido por vários investigadores pois, são amigos do ambiente e podem ser regenerados e reutilizados portanto possibilitam a utilização de processos contínuos. Neste contexto, a utilização de hidrotalcites Mg-Al, como catalisadores heterogéneos para produção de biodiesel foi investigada neste trabalho experimental. As hidrotalcites com diferentes razões molares Mg/Al (Mg/Al=1, 2, 3 e 4) foram preparadas pelo método de co-precipitação. As diversas matrizes catalíticas obtidas, calcinadas a diferentes temperaturas, foram caracterizadas por difracção de raios X (DRX), análise térmica (TG-DSC), espectroscopia de infravermelhos (MIR), microscopia electrónica de varrimento (SEM) e isotérmicas de adsorção com azoto (BET). Estes catalisadores foram testados na metanólise de óleos vegetais para produzir biodiesel. As hidrotalcites Mg/Al=2, HT2A e HT2B (preparada com metade da quantidade de NaOH) calcinadas a 507 ºC e 700 ºC, respectivamente, foram as que apresentaram melhores resultados ao catalisar a reacção com um rendimento em éster superior a 97%, utilizando 2.5% da massa de catalisador, em relação à massa do óleo, razão molar metanol/óleo igual a 12, temperatura reaccional de 65 ºC durante 4h. Foi também investigada a reutilização do catalisador e o efeito da temperatura de calcinação. Constatou-se que o catalisador hidrotalcite HT2B apresentou melhor comportamento catalítico pois permitiu catalisar a reacção de transesterificação até três ciclos reaccionais, convertendo em ésteres 97%, 92% e 34% no primeiro, segundo e terceiro ciclos reaccionais, respectivamente. A análise de, algumas propriedades do biodiesel obtido como, o índice de acidez, a viscosidade e o índice de iodo mostraram que os resultados obtidos estão dentro dos valores limite recomendados pela norma EN 14214. Em anexo apresenta-se uma comunicação à First International Conference on Materials for Energy, Karlsruhe, 2010.
Resumo:
Biodiesel is the main alternative to fossil diesel and it may be produced from different feedstocks such as semi-refined vegetable oils, waste frying oils or animal fats. However, these feedstocks usually contain significant amounts of free fatty acids (FFA) that make them inadequate for the direct base catalyzed transesterification reaction (where the FFA content should be lower than 4%). The present work describes a possible method for the pre-treatment of oils with a high content of FFA (20 to 50%) by esterification with glycerol. In order to reduce the FFA content, the reaction between these FFA and an esterification agent is carried out before the transesterification reaction. The reaction kinetics was studied in terms of its main factors such astemperature, % of glycerin excess, % of catalyst used, stirring velocity and type of catalyst used. The results showed that glycerolysis is a promising pretreatment to acidic oils or fats (> 20%) as they led to the production of an intermediary material with a low content of FFA that can be used directly in thetransesterification reaction for the production of biodiesel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 degrees C and 700 degrees C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60 -65 degrees C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Biodiesel production from semi-refined oils (SRO) and waste frying oils (WFO) was studied using commercial CaO as heterogeneous catalyst. The methanolysis tests were carried out in mild reaction conditions (62 A degrees C, atmospheric pressure). With such conditions, SRO (soybean and rapeseed) allowed to produce a biodiesel containing 97-98 % of methyl esters (FAME), whereas WFO only provided 86-87 % of FAME. The lower FAME yield for WFO oil is ascribable to the partial neutralization of the catalyst by free fatty acids. Also, soaps formation from the WFO oil reduced the weight yield of the oil phase (containing FAME) obtained and increased the MONG content of the glycerin phase. The catalysts stability tests showed high stability even when WFO oil was processed. Catalytic tests performed with blends of WFO/semi-refined oils showed blending as a good strategy to process low value raw oils with minor decay of the catalyst performance. Both WFO and semi-refined oils showed S-shape kinetics curves thus discarding significant differences of the reaction mechanisms.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
Biodiesel production by methanolysis of semi-refined rapeseed oil was studied over lime based catalysts. In order to improve the catalysts basicity a commercial CaO material was impregnated with aqueous solution of lithium nitrate (Li/Ca = 03 atomic ratio). The catalysts were calcined at 575 degrees C and 800 degrees C, for 5 h, to remove nitrate ions before reaction. The XRD patterns of the fresh catalysts, including the bare CaO, showed lines ascribable to CaO and Ca(OH)(2). The absence of XRD lines belonging to Li phases confirms the efficient dispersion of Li over CaO. In the tested condition (W-cat/W-oil = 5%; CH3OH/oil = 12 molar ratio) all the fresh catalysts provided similar biodiesel yields (FAME >93% after 4 h) but the bare CaO catalyst was more stable. The activity decay of the Li modified samples can be related to the enhanced, by the higher basicity, calcium diglyceroxide formation during methanolysis which promotes calcium leaching. The calcination temperature for Li modified catalysts plays an important role since encourages the crystals sinterization which appears to improve the catalyst stability. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a case study of heat exchanger network (HEN) retrofit with the objective to reduce the utilities consumption in a biodiesel production process. Pinch analysis studies allow determining the minimum duty utilities as well the maximum of heat recovery. The existence of heat exchangers for heat recovery already running in the process causes a serious restriction for the implementation of grassroot HEN design based on pinch studies. Maintaining the existing HEN, a set of alternatives with additional heat exchangers was created and analysed using some industrial advice and selection criteria. The final proposed solution allows to increase the actual 18 % of recovery heat of the all heating needs of the process to 23 %, with an estimated annual saving in hot utility of 35 k(sic)/y.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
This paper describes preliminary work done towards the development of new metallic heterogeneous catalysts to be used in the transesterification reaction of triglycerides, which is of considerable interest in the production of biodiesel. Biodiesel, is a mixture of mono-alkyl esters of fatty acids, and is currently manufactured by transesterification of triglycerides with methanol using NaOH or KOH as liquid base catalyst. Catalysts as such are corrosive to the equipment, and as these catalysts are in liquid phase must be neutralized after the completion of the reaction, typically using HCl, thus producing salt streams. Moreover, due to the presence of free fatty acids it reacts to form soaps as unwanted by-products, hence requiring more expensive separation processes. Therefore, there is a great need on the development of industrial processes for biodiesel production using solid acid catalysts. The key benefit of using solid acid catalysts is that no polluting by-products are formed and the catalysts do not have to be removed since they do not mix with the biodiesel product.
Resumo:
This paper presents an optimization study of a distillation column for methanol and aqueous glycerol separation in a biodiesel production plant. Considering the available physical data of the column configuration, a steady state model was built for the column using Aspen-HYSYS as process simulator. Several sensitivity analysis were performed in order to better understand the relation between the variables of the distillation process. With the information obtained by the simulator, it is possible to define the best range for some operational variables that maintain composition of the desired product under specifications and choose operational conditions to minimize energy consumptions.