11 resultados para ANGULAR-MOMENTUM TRANSPORT
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We present structural, optical and transport data on GaN samples grown by hybrid, two-step low temperature pulsed laser deposition. The band gap of samples with good crystallinity has been deduced from optical spectra. Large below gap band tails were observed. In samples with the lowest crystalline quality the PL spectra are quite dependent on spot laser incidence. The most intense PL lines can be attributed to excitons bounded to stacking faults. When the crystalline quality of the samples is increased the ubiquitous yellow emission band can be detected following a quenching process described by a similar activation energy to that one found in MOCVD grown samples. The samples with the highest quality present, besides the yellow band, show a large near band edge emission which peaked at 3.47 eV and could be observed up to room temperature. The large width of the NBE is attributed to effect of a wide distribution of band tail states on the excitons. Photoconductivity data supports this interpretation.
Resumo:
Microcrystalline silicon is a two-phase material. Its composition can be interpreted as a series of grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of dangling bonds in the transition regions. In this paper, results for the transport properties of a mu c-Si:H p-i-n junction obtained by means of two-dimensional numerical simulation are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken into account and these regions are treated similar to a heterojunction interface. The device is analysed under AM1.5 illumination and the paper outlines the influence of the local electric field at the grain boundary transition regions on the internal electric configuration of the device and on the transport mechanism within the mu c-Si:H intrinsic layer.
Resumo:
The dynamics of a cylinder rolling on a horizontal plane acted on by an external force applied at an arbitrary angle is studied with emphasis on the directions of the acceleration of the centre-of-mass and the angular acceleration of the body. If rolling occurs without slipping, there is a relationship between the directions of these accelerations. If the linear acceleration points to the right, then the angular acceleration is clockwise. On the other hand, if it points to the left, then the angular acceleration is counterclockwise. In contrast, if rolling and slipping occurs, the direction of the linear acceleration does not determine the direction of the angular acceleration. For example, the linear acceleration may point to the right and the angular acceleration clockwise or counterclockwise depending on the external force orientation and point of application.
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
Electrical resistivity, transverse magnetoresistance and thermoelectric power measurements were performed on CuS high quality single crystals in the range 1.2-300 K and under fields of up to 16 T. The zero field resistivity data are well described below 55 K by a quasi-2D model, consistent with a carrier confinement at lower temperatures, before the transition to the superconducting state. The transverse magnetoresistance develops mainly below 30 K and attains values as large as 470% for a 16 T field at 5 K, this behaviour being ascribed to a band effect mechanism, with a possible magnetic field induced DOS change at the Fermi level. The transverse magnetoresistance shows no signs of saturation, following a power law with field Delta rho/rho(0) proportional to H(1.4), suggesting the existence of open orbits for carriers at the Fermi surface. The thermoelectric power shows an unusual temperature dependence, probably as a result of the complex band structure of CuS.
Resumo:
The objectives of this study were to (1) conduct an elemental characterization of airborne particles sampled in Cape Verde and (2) assess the influence of Sahara desert on local suspended particles. Particulate matter (PM10) was collected in Praia city (14°94'N; 23°49'W) with a low-volume sampler in order to characterize its chemical composition by k0-INAA. The filter samples were first weighed and subsequently irradiated at the Portuguese Research Reactor. Results showed that PM10 concentrations in Cape Verde markedly exceeded the health-based air quality standards defined by the European Union (EU), World Health Organization (WHO), and U.S. Environmental Protection Agency (EPA), in part due to the influence of Sahara dust transport. The PM10 composition was characterized essentially by high concentrations of elements originating from the soil (K, Sm, Co, Fe, Sc, Rb, Cr, Ce, and Ba) and sea (Na), and low concentrations of anthropogenic elements (As, Zn, and Sb). In addition, the high concentrations of PM measured in Cape Verde suggest that health of the population may be less affected compared with other sites where PM10 concentrations are lower but more enriched with toxic elements.
Resumo:
Ballet gestures are highly non-anatomical and physiological, leading to compensatory behaviors. The knee joint is most affected by this behavior, leading to an increase risk of injury. Our purpose is to describe the knee angular displacement in amateur dancers, during a demi-plié exercise, with emphasis on valgus mechanisms frequency. Methods: 192 demi-pliés collected in six amateur female dancers (mean age = 15.33 ± 1.37 years), were analyzed regarding sagittal and frontal plane angular displacement, with an electrogoniometer connected to a signal acquisition unit at 1000 Hz. Results: all subjects presented valgus peaks along the trials, despite the global varus tendency of the knee frontal plane behavior. A significant positive correlation between the frequency of valgus and practice time was noted. Discussion: A variable angular frontal displacement was observed, with some trials comprehending a high incidence of valgus peaks along the ascending or descending phase of the demi-plié exercise. Conclusion: the frontal knee angle behavior is variable. It may present fast peaks of valgus or an initial trend of varus/valgus that is different from the global varus trend. The analysis of the activity should be considered in the training. The practice time may be related to the observed behavior.
Resumo:
Mestrado em Fisioterapia
Resumo:
In this work a mixed integer optimization linear programming (MILP) model was applied to mixed line rate (MLR) IP over WDM and IP over OTN over WDM (with and without OTN grooming) networks, with aim to reduce network energy consumption. Energy-aware and energy-aware & short-path routing techniques were used. Simulations were made based on a real network topology as well as on forecasts of traffic matrix based on statistical data from 2005 up to 2017. Energy aware routing optimization model on IPoWDM network, showed the lowest energy consumption along all years, and once compared with energy-aware & short-path routing, has led to an overall reduction in energy consumption up to 29%, expecting to save even more than shortest-path routing. © 2014 IEEE.
Resumo:
The associated production of a Higgs boson and a top-quark pair, t (t) over barH, in proton-proton collisions is addressed in this paper for a center of mass energy of 13 TeV at the LHC. Dileptonic final states of t (t) over barH events with two oppositely charged leptons and four jets from the decays t -> bW(+) -> bl(+)v(l), (t) over bar -> (b) over barW(-) -> (b) over barl(-)(v) over bar (l) and h -> b (b) over bar are used. Signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed by applying a kinematic fit. New angular distributions of the decay products as well as angular asymmetries are explored in order to improve discrimination of t (t) over barH signal events over the dominant irreducible background contribution, t (t) over barb (b) over bar. Even after the full kinematic fit reconstruction of the events, the proposed angular distributions and asymmetries are still quite different in the t (t) over barH signal and the dominant background (t (t) over barb (b) over bar).
Resumo:
The complexity associated with fast growing of B2B and the lack of a (complete) suite of open standards makes difficulty to maintain the underlying collaborative processes. Aligned to this challenge, this paper aims to be a contribution to an open architecture of logistics and transport processes management system. A model of an open integrated system is being defined as an open computational responsibility from the embedded systems (on-board) as well as a reference implementation (prototype) of a host system to validate the proposed open interfaces. Embedded subsystem can, natively, be prepared to cooperate with other on-board units and with IT-systems in an infrastructure commonly referred to as a center information system or back-office. In interaction with a central system the proposal is to adopt an open framework for cooperation where the embedded unit or the unit placed somewhere (land/sea) interacts in response to a set of implemented capabilities.