57 resultados para LEARNING-PROBLEMS
Resumo:
This paper presents a computational tool (PHEx) developed in Excel VBA for solving sizing and rating design problems involving Chevron type plate heat exchangers (PHE) with 1-pass-1-pass configuration. The rating methodology procedure used in the program is outlined, and a case study is presented with the purpose to show how the program can be used to develop sensitivity analysis to several dimensional parameters of PHE and to observe their effect on transferred heat and pressure drop.
Resumo:
Actualmente existem evidências suficientes sobre os problemas de comunicação entre profissionais de saúde e pacientes e os benefícios de uma comunicação eficaz. Alguns autores chegam mesmo a considerar a comunicação como a ferramenta mais importante nos cuidados de saúde. Desde o início dos anos 90, as escolas médicas têm aumentado o interesse no ensino de competências comunicacionais; contudo, e não obstante este interesse crescente, a comunicação assertiva parece ser votada ao esquecimento. Na verdade, enquanto a assertividade tem recebido atenção crescente na literatura da Psicologia, os profissionais de saúde têm-se mostrado relutantes em aderir a esta área do saber, sendo os treinos assertivos para cuidadores ainda muito escassos. O objectivo deste trabalho é apresentar uma visão geral da assertividade e dos contributos desta para a comunicação eficaz dos profissionais de saúde com os pacientes e apontar seis temáticas específicas (por exemplo, lidar com reacções emocionais excessivas; elaborar pedidos) que devem integrar os treinos de comunicação para estudantes da área da saúde e profissionais de saúde.
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclo
Resumo:
Neste workshop pretende-se apresentar uma aplicação móvel (Moxtra) que integra uma experiência de inovação pedagógica no âmbito do mobile-learning que está em pleno desenvolvimento, com a participação ativa dos estudantes e docentes das unidades curriculares de Hematologia Laboratorial I e II do curso de Ciências Biomédicas Laboratoriais. A adesão dos estudantes ao projeto mobile-learning é inédita no nosso país e tem sido muito positiva. O workshop terá dois objetivos: a) Conhecer os principais atributos da aplicação Moxtra; b) Construir um modelo de gestão de aprendizagem para uma unidade curricular.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.
Resumo:
In this work, we present a teaching-learning sequence on colour intended to a pre-service elementary teacher programme informed by History and Philosophy of Science. Working in a socio-constructivist framework, we made an excursion on the history of colour. Our excursion through history of colour, as well as the reported misconception on colour helps us to inform the constructions of the teaching-learning sequence. We apply a questionnaire both before and after each of the two cycles of action-research in order to assess students’ knowledge evolution on colour and to evaluate our teaching-learning sequence. Finally, we present a discussion on the persistence of deep-rooted alternative conceptions.
Resumo:
Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.