52 resultados para Word and image
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Introdução – O presente estudo avaliou o efeito da cafeína no valor da razão contraste ruído (CNR) em imagens SWI. Objetivos – Avaliar o efeito da cafeína qualitativamente e quantificado pelo cálculo do valor CNR em imagens de magnitude e MIP para as estruturas: veia cerebral interna, seio sagital superior, tórcula e artéria cerebral média. Metodologia – A população do estudo incluiu 24 voluntários saudáveis que estiveram pelo menos 24h privados da ingestão de cafeína. Adquiriram-se imagens SWI antes e após a ingestão de 100ml de café. Os voluntários foram subdivididos em quatro grupos de seis indivíduos/grupo e avaliados separadamente após decorrido um intervalo de tempo diferente para cada grupo (15, 25, 30 ou 45min pós-cafeína). Utilizou-se um scanner Siemens Avanto 1,5 T com bobine standard de crânio e os parâmetros: T2* GRE 3D de alta resolução no plano axial, TR=49; TE=40; FA=15; FOV=187x230; matriz=221x320. O processamento de imagem foi efetuado no software OsiriX® e a análise estatística no GraphPadPrism®. Resultados e Discussão – As alterações de sinal e diferenças de contraste predominaram nas estruturas venosas e não foram significantes na substância branca, LCR e artéria cerebral média. Os valores CNR pré-cafeína diferiram significativamente do pós-cafeína nas imagens de magnitude e MIP na veia cerebral interna e nas imagens de magnitude do seio sagital superior e da tórcula (p<0,0001). Não se verificaram diferenças significativas entre os grupos avaliados nos diferentes tempos pós-cafeína. Conclusões – Especulamos que a cafeína possa vir a ser usada como agente de contraste nas imagens SWI barato, eficaz e de fácil administração.
Resumo:
In 2012 we were awarded an Erasmus Intensive Programme grant to facilitate OPTIMAX 2013, a three week duration residential summer school held within the UK during August 2013. The summer school helped to further develop student radiographer skills in optimising x-radiation dose and image quality. With a major emphasis on visual techniques to determine image quality, lesion visibility, lesion detection performance and physical measures of image quality (eg signal to noise ratio (SNR)) we conducted controlled laboratory experiments on phantoms using Computed Radiography, CT and Full Field Digital Mammography. Mathematical modelling was used for radiation dose estimation. Sixty seven people from 5 European countries participated. This included 49 PhD, MSc and BSc students. Discipline areas included radiography, physics, biomedical science and nuclear medicine.
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
Introduction: The purpose of this review is to gather and analyse current research publications to evaluate Sinogram-Affirmed Iterative Reconstruction (SAFIRE). The aim of this review is to investigate whether this algorithm is capable of reducing the dose delivered during CT imaging while maintaining image quality. Recent research shows that children have a greater risk per unit dose due to increased radiosensitivity and longer life expectancies, which means it is particularly important to reduce the radiation dose received by children. Discussion: Recent publications suggest that SAFIRE is capable of reducing image noise in CT images, thereby enabling the potential to reduce dose. Some publications suggest a decrease in dose, by up to 64% compared to filtered back projection, can be accomplished without a change in image quality. However, literature suggests that using a higher SAFIRE strength may alter the image texture, creating an overly ‘smoothed’ image that lacks contrast. Some literature reports SAFIRE gives decreased low contrast detectability as well as spatial resolution. Publications tend to agree that SAFIRE strength three is optimal for an acceptable level of visual image quality, but more research is required. The importance of creating a balance between dose reduction and image quality is stressed. In this literature review most of the publications were completed using adults or phantoms, and a distinct lack of literature for paediatric patients is noted. Conclusion: It is necessary to find an optimal way to balance dose reduction and image quality. More research relating to SAFIRE and paediatric patients is required to fully investigate dose reduction potential in this population, for a range of different SAFIRE strengths.
Resumo:
Aims of study: 1) Describe the importance of human visual system on lesion detection in medical imaging perception research; 2) Discuss the relevance of research in medical imaging addressing visual function analysis; 3) Identify visual function tests which could be conducted on observers prior to participation in medical imaging perception research.
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
This review aims to identify strategies to optimise radiography practice using digital technologies, for full spine studies on paediatrics focusing particularly on methods used to diagnose and measure severity of spinal curvatures. The literature search was performed on different databases (PubMed, Google Scholar and ScienceDirect) and relevant websites (e.g., American College of Radiology and International Commission on Radiological Protection) to identify guidelines and recent studies focused on dose optimisation in paediatrics using digital technologies. Plain radiography was identified as the most accurate method. The American College of Radiology (ACR) and European Commission (EC) provided two guidelines that were identified as the most relevant to the subject. The ACR guidelines were updated in 2014; however these guidelines do not provide detailed guidance on technical exposure parameters. The EC guidelines are more complete but are dedicated to screen film systems. Other studies provided reviews on the several exposure parameters that should be included for optimisation, such as tube current, tube voltage and source-to-image distance; however, only explored few of these parameters and not all of them together. One publication explored all parameters together but this was for adults only. Due to lack of literature on exposure parameters for paediatrics, more research is required to guide and harmonise practice.
Resumo:
Aim: Optimise a set of exposure factors, with the lowest effective dose, to delineate spinal curvature with the modified Cobb method in a full spine using computed radiography (CR) for a 5-year-old paediatric anthropomorphic phantom. Methods: Images were acquired by varying a set of parameters: positions (antero-posterior (AP), posteroanterior (PA) and lateral), kilo-voltage peak (kVp) (66-90), source-to-image distance (SID) (150 to 200cm), broad focus and the use of a grid (grid in/out) to analyse the impact on E and image quality (IQ). IQ was analysed applying two approaches: objective [contrast-to-noise-ratio/(CNR] and perceptual, using 5 observers. Monte-Carlo modelling was used for dose estimation. Cohen’s Kappa coefficient was used to calculate inter-observer-variability. The angle was measured using Cobb’s method on lateral projections under different imaging conditions. Results: PA promoted the lowest effective dose (0.013 mSv) compared to AP (0.048 mSv) and lateral (0.025 mSv). The exposure parameters that allowed lower dose were 200cm SID, 90 kVp, broad focus and grid out for paediatrics using an Agfa CR system. Thirty-seven images were assessed for IQ and thirty-two were classified adequate. Cobb angle measurements varied between 16°±2.9 and 19.9°±0.9. Conclusion: Cobb angle measurements can be performed using the lowest dose with a low contrast-tonoise ratio. The variation on measurements for this was ±2.9° and this is within the range of acceptable clinical error without impact on clinical diagnosis. Further work is recommended on improvement to the sample size and a more robust perceptual IQ assessment protocol for observers.
Resumo:
Patients scheduled for a magnetic resonance imaging (MRI) scan sometimes require screening for ferromagnetic Intra Orbital Foreign Bodies (IOFBs). To assess this, they are required to fill out a screening protocol questionnaire before their scan. If it is established that a patient is at high risk, radiographic imaging is necessary. This review examines literature to evaluate which imaging modality should be used to screen for IOFBs, considering that the eye is highly sensitive to ionising radiation and any dose should be minimised. Method: Several websites and books were searched for information, these were as follows: PubMed, Science Direct, Web of Knowledge and Google Scholar. The terms searched related to IOFB, Ionising radiation, Magnetic Resonance Imaging Safety, Image Quality, Effective Dose, Orbits and X-ray. Thirty five articles were found, several were rejected due to age or irrelevance; twenty eight were eventually accepted. Results: There are several imaging techniques that can be used. Some articles investigated the use of ultrasound for investigation of ferromagnetic IOFBs of the eye and others discussed using Computed Tomography (CT) and X-ray. Some gaps in the literature were identified, mainly that there are no articles which discuss the lowest effective dose while having adequate image quality for orbital imaging. Conclusion: X-ray is the best method to identify IOFBs. The only problem is that there is no research which highlights exposure factors that maintain sufficient image quality for viewing IOFBs and keep the effective dose to the eye As Low As Reasonably Achievable (ALARA).
Resumo:
Purpose: Pressure ulcers are a high cost, high volume issue for health and medical care providers, having a detrimental effect on patients and relatives. Pressure ulcer prevention is widely covered in the literature, but little has been published regarding the risk to patients in the radiographical setting. This review of the current literature is to identify findings relevant to radiographical context. Methods: Literature searching was performed using Science Direct and Medline databases. The search was limited to articles published in the last ten years to remain current and excluded studies containing participants less than 17 years of age. In total 14 studies were acquired; three were excluded as they were not relevant. The remaining 11 studies were compared and reviewed. Discussion: Eight of the studies used ‘healthy’ participants and three used symptomatic participants. Nine studies explored interface pressure with a range of pressure mat technologies, two studies measured shear (MRI finite element modelling, and a non-invasive instrument), and one looked at blood flow and haemoglobin oxygenation. A range of surfaces were considered from trauma, nursing and surgical backgrounds for their ability to reduce pressure including standard mattresses, high specification mattresses, rigid and soft layer spine boards, various overlays (gel, air filled, foam). Conclusion: The current literature is not appropriate for the radiographic patient and cannot be extrapolated to a radiologic context. Sufficient evidence is presented in this review to support the need for further work specific to radiography in order to minimise the development of PU in at risk patients.
Resumo:
Tese de doutoramento, Belas-Artes (Teoria da Imagem), Universidade de Lisboa, Faculdade de Belas-Artes, 2013
Resumo:
Introduction: Standard Uptake Value (SUV) is a measurement of the uptake in a tumour normalized on the basis of a distribution volume and is used to quantify 18F-Fluorodeoxiglucose (FDG) uptake in tumors, such as primary lung tumor. Several sources of error can affect its accuracy. Normalization can be based on body weight, body surface area (BSA) and lean body mass (LBM). The aim of this study is to compare the influence of 3 normalization volumes in the calculation of SUV: body weight (SUVW), BSA (SUVBSA) and LBM (SUVLBM), with and without glucose correction, in patients with known primary lung tumor. The correlation between SUV and weight, height, blood glucose level, injected activity and time between injection and image acquisition is evaluated. Methods: Sample included 30 subjects (8 female and 22 male) with primary lung tumor, with clinical indication for 18F-FDG Positron Emission Tomography (PET). Images were acquired on a Siemens Biography according to the department’s protocol. Maximum pixel SUVW was obtained for abnormal uptake focus through semiautomatic VOI with Quantification 3D isocontour (threshold 2.5). The concentration of radioactivity (kBq/ml) was obtained from SUVW, SUVBSA, SUVLBM and the glucose corrected SUV were mathematically obtained. Results: Statistically significant differences between SUVW, SUVBSA and SUVLBM and between SUVWgluc, SUVBSAgluc and SUVLBMgluc were observed (p=0.000<0.05). The blood glucose level showed significant positive correlations with SUVW (r=0.371; p=0.043) and SUVLBM (r=0.389; p=0.034). SUVBSA showed independence of variations with the blood glucose level. Conclusion: The measurement of a radiopharmaceutical tumor uptake normalized on the basis of different distribution volumes is still variable. Further investigation on this subject is recommended.
Resumo:
Dissertação submetida à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Artes Performativas - especialização em Interpretação