42 resultados para Optimal reactive source expansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a two-stage stochastic programming approach for the development of optimal offering strategies for wind power producers. Uncertainty is related to electricity market prices and wind power production. A hybrid intelligent approach, combining wavelet transform, particle swarm optimization and adaptive-network-based fuzzy inference system, is used in this paper to generate plausible scenarios. Also, risk aversion is explicitly modeled using the conditional value-at-risk methodology. Results from a realistic case study, based on a wind farm in Portugal, are provided and analyzed. Finally, conclusions are duly drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of optimal positioning of surface bonded piezoelectric patches in sandwich plates with viscoelastic core and laminated face layers. The objective is to maximize a set of modal loss factors for a given frequency range using multiobjective topology optimization. Active damping is introduced through co-located negative velocity feedback control. The multiobjective topology optimization problem is solved using the Direct MultiSearch Method. An application to a simply supported sandwich plate is presented with results for the maximization of the first six modal loss factors. The influence of the finite element mesh is analyzed and the results are, to some extent, compared with those obtained using alternative single objective optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy efficiency plays an important role to the CO2 emissions reduction, combating climate change and improving the competitiveness of the economy. The problem presented here is related to the use of stand-alone diesel gen-sets and its high specific fuel consumptions when operates at low loads. The variable speed gen-set concept is explained as an energy-saving solution to improve this system efficiency. This paper details how an optimum fuel consumption trajectory based on experimentally Diesel engine power map is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic cobalt nitride films were grown onto different single crystalline substrates Al2O3 (0 0 0 1) and (1 1 View the MathML source 0), MgO (1 0 0) and (1 1 0) and TiO2 (1 0 0) and (1 1 0). The films display low atomic densities compared with the bulk material, are ferromagnetic and have metallic electrical conductivity. X-ray diffraction and X-ray absorption fine structure confirm the cubic structure of the films and with RBS results indicate that samples are not homogeneous at the microscopic scale, coexisting Co4+xN nitride with nitrogen rich regions. The magnetization of the films decreases with increase of the nitrogen content, variation that is shown to be due to the decrease of the cobalt density, and not to a decrease of the magnetic moment per cobalt ion. The films are crystalline with a nitrogen deficient stoichiometry and epitaxial with orientation determined by the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2. © Author(s) 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Risk Based Inspection (RBI) is a risk methodology used as the basis for prioritizing and managing the efforts for an inspection program allowing the allocation of resources to provide a higher level of coverage on physical assets with higher risk. The main goal of RBI is to increase equipment availability while improving or maintaining the accepted level of risk. This paper presents the concept of risk, risk analysis and RBI methodology and shows an approach to determine the optimal inspection frequency for physical assets based on the potential risk and mainly on the quantification of the probability of failure. It makes use of some assumptions in a structured decision making process. The proposed methodology allows an optimization of inspection intervals deciding when the first inspection must be performed as well as the subsequent intervals of inspection. A demonstrative example is also presented to illustrate the application of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formulation of a bending vibration problem of an elastically restrained Bernoulli-Euler beam carrying a finite number of concentrated elements along its length is presented. In this study, the authors exploit the application of the differential evolution optimization technique to identify the torsional stiffness properties of the elastic supports of a Bernoulli-Euler beam. This hybrid strategy allows the determination of the natural frequencies and mode shapes of continuous beams, taking into account the effect of attached concentrated masses and rotational inertias, followed by a reconciliation step between the theoretical model results and the experimental ones. The proposed optimal identification of the elastic support parameters is computationally demanding if the exact eigenproblem solving is considered. Hence, the use of a Gaussian process regression as a meta-model is addressed. An experimental application is used in order to assess the accuracy of the estimated parameters throughout the comparison of the experimentally obtained natural frequency, from impact tests, and the correspondent computed eigenfrequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a coordination approach to maximize the total profit of wind power systems coordinated with concentrated solar power systems, having molten-salt thermal energy storage. Both systems are effectively handled by mixed-integer linear programming in the approach, allowing enhancement on the operational during non-insolation periods. Transmission grid constraints and technical operating constraints on both systems are modeled to enable a true management support for the integration of renewable energy sources in day-ahead electricity markets. A representative case study based on real systems is considered to demonstrate the effectiveness of the proposed approach. © IFIP International Federation for Information Processing 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoniazid (INH) is still one of the two most effective antitubercular drugs and is included in all recommended multitherapeutic regimens. Because of the increasing resistance of Mycobacterium tuberculosis to INH, mainly associated with mutations in the katG gene, new INH-based compounds have been proposed to circumvent this problem. In this work, we present a detailed comparative study of the molecular determinants of the interactions between wt KatG or its S315T mutant form and either INH or INH-C10, a new acylated INH derivative. MD simulations were used to explore the conformational space of both proteins, and results indicate that the S315T mutation did not have a significant impact on the average size of the access tunnel in the vicinity of these residues. Our simulations also indicate that the steric hindrance role assigned to Asp137 is transient and that electrostatic changes can be important in understanding the enzyme activity data of mutations in KatG. Additionally, molecular docking studies were used to determine the preferred modes of binding of the two substrates. Upon mutation, the apparently less favored docking solution for reaction became the most abundant, suggesting that S315T mutation favors less optimal binding modes. Moreover, the aliphatic tail in INH-C10 seems to bring the hydrazine group closer to the heme, thus favoring the apparent most reactive binding mode, regardless of the enzyme form. The ITC data is in agreement with our interpretation of the C10 alkyl chain role and helped to rationalize the significantly lower experimental MIC value observed for INH-C10. This compound seems to be able to counterbalance most of the conformational restrictions introduced by the mutation, which are thought to be responsible for the decrease in INH activity in the mutated strain. Therefore, INH-C10 appears to be a very promising lead compound for drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.