37 resultados para INTERPERSONAL COMPARISONS
Resumo:
Alzheimer Disease (AD) is characterized by progressive cognitive decline and dementia. Earlier diagnosis and classification of different stages of the disease are currently the main challenges and can be assessed by neuroimaging. With this work we aim to evaluate the quality of brain regions and neuroimaging metrics as biomarkers of AD. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox functionalities were used to study AD by T1weighted, Diffusion Tensor Imaging and 18FAV45 PET, with data obtained from the AD Neuroimaging Initiative database, specifically 12 healthy controls (CTRL) and 33 patients with early mild cognitive impairment (EMCI), late MCI (LMCI) and AD (11 patients/group). The metrics evaluated were gray-matter volume (GMV), cortical thickness (CThk), mean diffusivity (MD), fractional anisotropy (FA), fiber count (FiberConn), node degree (Deg), cluster coefficient (ClusC) and relative standard-uptake-values (rSUV). Receiver Operating Characteristic (ROC) curves were used to evaluate and compare the diagnostic accuracy of the most significant metrics and brain regions and expressed as area under the curve (AUC). Comparisons were performed between groups. The RH-Accumbens/Deg demonstrated the highest AUC when differentiating between CTRLEMCI (82%), whether rSUV presented it in several brain regions when distinguishing CTRL-LMCI (99%). Regarding CTRL-AD, highest AUC were found with LH-STG/FiberConn and RH-FP/FiberConn (~100%). A larger number of neuroimaging metrics related with cortical atrophy with AUC>70% was found in CTRL-AD in both hemispheres, while in earlier stages, cortical metrics showed in more confined areas of the temporal region and mainly in LH, indicating an increasing of the spread of cortical atrophy that is characteristic of disease progression. In CTRL-EMCI several brain regions and neuroimaging metrics presented AUC>70% with a worst result in later stages suggesting these indicators as biomarkers for an earlier stage of MCI, although further research is necessary.
Resumo:
Considering that recent european high-speed railway system has a traction power system of kV 50 Hz, which causes electromagnetic emission for the outside world, it is important to dimension the railway system emissions, using a frequency/distance dependent propagation model. This paper presents an enhanced theoretical model for VLF to UHF propagation, railway system oriented. It introduces the near field approach (crucial in low frequency propagation) and also considers the source characteristics and type of measuring antenna. Simulations are presented, and comparisons are set with earlier far field models. Using the developed model, a real case study was performed in partnership with Refer Telecom (portuguese telecom operator for railways). The new propagation model was used in order to predict the future high-speed railway electromagnetic emissions in the Lisbon north track. The results show the model's prediction capabilities and also its applicability to realistic scenarios.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
Objectives - To identify occupational stressors and coping resources in a group of physiotherapists, and to analyse interactions between subjective levels of stress, efficacy in stress resolution and coping resources used by these professionals. Design - A sample of 55 physiotherapists working in three general hospitals in Portugal completed the Coping Resources Inventory for Stress, the Occupational Stressors Inventory and two subjective scales for stress and stress resolution. Main results - Most physiotherapists perceived that they were moderately stressed (19/55, 35%) or stressed (20/55, 36%) due to work, and reported that their efficacy in stress resolution was moderate (25/54, 46%) or efficient (23/54, 42%). Issues related to lack of professional autonomy, lack of organisation in the hierarchical command chain, lack of professional and social recognition, disorganisation in task distribution and interpersonal conflicts with superiors were identified as the main sources of stress. The most frequently used coping resources were social support, stress monitoring, physical health and structuring. Perceived efficacy in stress resolution was inversely related to perceived level of occupational stress (r = −0.61, P < 0.01). Significant correlations were found between several coping resources and the perceived level of stress and efficacy in stress resolution. Associations between problem solving, cognitive restructuring and stress monitoring and both low levels of perceived stress and high levels of perceived efficacy were particularly strong. Implications for practice - The importance of identifying stressors and coping resources related to physiotherapists’ occupational stress, and the need for the development of specific training programmes to cope with stress are supported.
Resumo:
No literature data above atmospheric pressure could be found for the viscosity of TOTIVI. As a consequence, the present viscosity results could only be compared upon extrapolation of the vibrating wire data to 0.1 MPa. Independent viscosity measurements were performed, at atmospheric pressure, using an Ubbelohde capillary in order to compare with the vibrating wire results, extrapolated by means of the above mentioned correlation. The two data sets agree within +/- 1%, which is commensurate with the mutual uncertainty of the experimental methods. Comparisons of the literature data obtained at atmospheric pressure with the present extrapolated vibrating-wire viscosity measurements have shown an agreement within +/- 2% for temperatures up to 339 K and within +/- 3.3% for temperatures up to 368 K. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar