41 resultados para Functional Capability Framework
Resumo:
Aims of study: 1) Describe the importance of human visual system on lesion detection in medical imaging perception research; 2) Discuss the relevance of research in medical imaging addressing visual function analysis; 3) Identify visual function tests which could be conducted on observers prior to participation in medical imaging perception research.
Resumo:
Bifunctional Pt-HMOR catalysts were prepared by incipient wetness impregnation of various desilicated MOR obtained by alkaline treatment using NaOH concentrations ranging from 0.1 to 0.5 M. The zeolite structural changes upon modification were investigated by several techniques including powder X-ray diffraction,Al-27 and Si-29 MAS-NMR spectroscopy, N-2 adsorption, pyridine adsorption followed by infrared spectroscopy and the catalytic model reaction of m-xylene transformation. For low alkaline concentration the zeolite acidity is preserved, along with a slight increase of the volume correspondent to the larger micropores due to the removal of extra-framework debris already existent at the parent zeolite. At higher NaOH concentrations there is a significant loss of crystalinity and acidity as well as the formation of mesoporosity. The characterization of the metal function shows similar patterns for Pt-HMOR and Pt-M/0.1 samples, with Pt particles located mainly inside the inner porosity. In contrast, large Pt particles become visible at the intercrystalline mesoporosity of MOR crystals developed during the desilication treatments at severe alkaline conditions. The catalytic results obtained for n-hexane hydroisomerization showed an improved selectivity for dibranched over monobranched isomers for Pt-M/0.1 sample, likely due to the preservation of the support acidity and the slight enlargement of the micropores. This work is a new example in which the mesoporous development does not improve the catalytic efficiency of the zeolites, whereas mild alkaline desilication might be considered as an effective solution to produce customized catalysts with enhanced performance for a given application. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The activity and selectivity of bi-functional carbon-supported platinum catalysts for the hydroisomerization of n-alkanes have been studied. The influence of the properties of the carbon support on the performance of the catalysts were investigated by incorporating the metallic function on a series of carbons with varied porosity (microporous: GL-50 from Norit, and mesoporous: CMK-3) and surface chemistry (modified by wet oxidation). The characterization results achieved with H-2 chemisorption and TEM showed differences in surface metal concentrations and metal-support interactions depending on the support composition. The highest metal dispersion was achieved after oxidation of the carbon matrix in concentrated nitric acid, suggesting that the presence of surface functional sites distributed in inner and outer surface favors a homogeneous metal distribution. On the other hand, the higher hydrogenating activity of the catalysts prepared with the mesoporous carbon pointed out that a fast molecular traffic inside the pores plays an important role in the catalysts performance. For n-decane hydroisomerization of long chain n-alkanes, higher activities were obtained for the catalysts with an optimized acidity and metal dispersion along with adequate porosity, pointing out the importance of the support properties in the performance of the catalysts.
Resumo:
We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simulation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and inhomogeneous versions of Wertheim's first order perturbation theory for the association free energy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the fluid and analyze the surface properties for two isochores, one of which is close to the liquid side of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore close to coexistence. We relate this behavior to the properties of the bulk network liquid and find that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures, however, an almost fully bonded network is formed, and the simulations reveal a second adsorption regime which is not captured by DFT. We trace this failure to the neglect of orientational correlations of the particles, which are found to exhibit surface induced orientational order in this regime.
Resumo:
The operation of generalized Marx-type solid-state bipolar modulators is discussed and compared with simplified Marx-derived circuits, to evaluate their capability to deal with various load conditions. A comparative analysis on the number of switches per cell, fiber optic trigger count, losses, and switch hold-off voltages has been made. A circuit topology is obtained as a compromise in terms of operating performance, trigger simplicity, and switching losses. A five-stage laboratory prototype of this circuit has been assembled using 1200 V insulated gate bipolar transistors (IGBTs) and diodes, operating with 1000 V dc input voltage and 1 kHz frequency, giving 5 kV bipolar pulses, with 2.5 mu s pulse width and 5 mu s relaxation time into resistive, capacitive, and inductive loads.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Thesis to obtain the Master of Science Degree in Computer Science and Engineering
Resumo:
The CotA laccase-catalysed oxidation of the meta, para-disubstituted arylamine 2,4-diaminophenyldiamine delivers, under mild reaction conditions, a benzocarbazole derivative (1) (74% yield), a key structural motif of a diverse range of applications. This work extends the scope of aromatic frameworks obtained using these enzymes and represents a new efficient and clean method to construct in one step C-C and C-N bonds.
Resumo:
This review concerns metal-catalyzed reactions of oxidation of alcohols to the respective products, mainly ketones and aldehydes, mostly within the period of 2010–2014. Both conventional and unconventional systems, not only with usual reagents, but also with uncommon and prospective ones, are overviewed, with recently achieved developments.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.