47 resultados para Content analysis (Communication) -- Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do Grau de Mestre em Ciências da Educação, especialização em Administração Escolar

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa Para obtenção de grau de mestre em Ciências da Educação, Especialidade em Educação Especial – Problemas de Cognição e Multideficiência

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Artística, na especialização de Teatro na Educação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório de estágio apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Jornalismo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Especial, domínio Cognição e Multideficiência

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório Final de Estágio apresentado à Escola Superior de Dança com vista à obtenção do Grau de Mestre em Ensino de Dança.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório Final apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino no 1º e no 2º Ciclos do Ensino Básico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Artística – especialização em Teatro na Educação