54 resultados para CO ALLOY CATALYSTS
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações
Resumo:
Contrary to fungi, exposure to mycotoxins is not usually identified as a risk factor present in occupational settings. This is probably due to the inexistence of limits regarding concentration of airborne mycotoxins, and also due to the fact that these compounds are rarely monitored in occupational environments. Despite the optimal conditions for fungal growth and, consequently, for mycotoxins production in all the waste management chain, only a few articles were dedicated to study occupational exposure to mycotoxins in this occupational setting. Aim of study: A study was developed in Portugal aiming to assess occupational co-exposure to mycotoxins in the waste management setting.
Resumo:
The most common scenario in occupational settings is the co-exposure to several risk factors. This aspect has to be considered in the risk assessment process because can alter the toxicity and the health effects when dealing with a co-exposure to two or more chemical agents. A study was developed aiming to elucidate if there is occupational co-exposure to aflatoxin B1 (AFB1) and ochratoxin (OTA) in Portuguese swine production. To assess occupational exposure to both mycotoxins, a biomarker of internal dose was used. The same blood samples from workers of seven swine farms and controls were consider to measure AFB1 and OTA. Twenty one workers (75%) showed detectable levels of AFB1 with values ranging from <1 ng/ml to 8.94 ng/ml and with significantly higher concentration when compared with controls. In the case of OTA, there wasn't found a statistical difference between workers and controls and the values for workers group ranged from 0.34 ng/ml to 3.12 ng/ml and 1.76 ng/ml to 3.42 ng/ml for control group. The results suggest that occupational exposure to AFB1 occurs. However, in the case of OTA results, seems that food consumption plays an important role in both groups exposure. The results claim attention for the possible implications on health of this co-exposure.
Resumo:
Biodiesel production by methanolysis of semi-refined rapeseed oil was studied over lime based catalysts. In order to improve the catalysts basicity a commercial CaO material was impregnated with aqueous solution of lithium nitrate (Li/Ca = 03 atomic ratio). The catalysts were calcined at 575 degrees C and 800 degrees C, for 5 h, to remove nitrate ions before reaction. The XRD patterns of the fresh catalysts, including the bare CaO, showed lines ascribable to CaO and Ca(OH)(2). The absence of XRD lines belonging to Li phases confirms the efficient dispersion of Li over CaO. In the tested condition (W-cat/W-oil = 5%; CH3OH/oil = 12 molar ratio) all the fresh catalysts provided similar biodiesel yields (FAME >93% after 4 h) but the bare CaO catalyst was more stable. The activity decay of the Li modified samples can be related to the enhanced, by the higher basicity, calcium diglyceroxide formation during methanolysis which promotes calcium leaching. The calcination temperature for Li modified catalysts plays an important role since encourages the crystals sinterization which appears to improve the catalyst stability. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
One-pot template condensation of CCl3C=N with ammonia on a metal source [MnCl2 center dot 4H(2)O, FeCl3 center dot 6H(2)O or Co(CH3COO)(2)center dot 4H(2)O] in DMSO led to the formation of tris(2,4-bis(trichloromethyl)-1,3,5-triazapentadienato)-M(III) complexes, [M(NH=C(CCl3)NC(CCl3)=-NH}(3)]center dot n(CH3)(2)SO [M = Mn, n = 1 (1); M = Fe, n = 2 (2); M = Co, n = 2 (3)1, which were characterized using elemental analysis, and IR, ESI-MS and single-crystal X-ray analysis. The role of inter- and intramolecular non-covalent halogen and hydrogen bonds in the synthesis of 1-3 is discussed. It is shown that the crystal ionic radii of the metal ions [68.5 (Co) < 69 (Fe) < 72 (Mn), pm] are related to the corresponding Cl center dot center dot center dot Cl distances [3.178 (3) > 3.155 (2) > 3.133 (1) Al. Compounds 1-3 and the related di(triazapentadienato)-Cu(v) complex [Cu(NH=C(CCl3)NC(CCl3)=NH}2]center dot 2(CH3)(2)SO (4) act as catalyst precursors for the additive-free microwave (MW) assisted homogeneous oxidation of 1-phenylethanol with tert-butylhydroperoxide (TBHP), leading to the formation of acetophenone with yields up to 99% and TONs up to 5.0 x 10(3) after 1 h of low power (10 W) MW irradiation.
Resumo:
The very high antiproliferative activity of [Co(Cl)(H2O)(phendione)(2)][BF4] (phendione is 1,10-phenanthroline-5,6-dione) against three human tumor cell lines (half-maximal inhibitory concentration below 1 mu M) and its slight selectivity for the colorectal tumor cell line compared with healthy human fibroblasts led us to explore the mechanisms of action underlying this promising antitumor potential. As previously shown by our group, this complex induces cell cycle arrest in S phase and subsequent cell death by apoptosis and it also reduces the expression of proteins typically upregulated in tumors. In the present work, we demonstrate that [Co(Cl)(phendione)(2)(H2O)][BF4] (1) does not reduce the viability of nontumorigenic breast epithelial cells by more than 85 % at 1 mu M, (2) promotes the upregulation of proapoptotic Bax and cell-cycle-related p21, and (3) induces release of lactate dehydrogenase, which is partially reversed by ursodeoxycholic acid. DNA interaction studies were performed to uncover the genotoxicity of the complex and demonstrate that even though it displays K (b) (+/- A standard error of the mean) of (3.48 +/- A 0.03) x 10(5) M-1 and is able to produce double-strand breaks in a concentration-dependent manner, it does not exert any clastogenic effect ex vivo, ruling out DNA as a major cellular target for the complex. Steady-state and time-resolved fluorescence spectroscopy studies are indicative of a strong and specific interaction of the complex with human serum albumin, involving one binding site, at a distance of approximately 1.5 nm for the Trp214 indole side chain with log K (b) similar to 4.7, thus suggesting that this complex can be efficiently transported by albumin in the blood plasma.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
A swift chemical route to synthesize Co-doped SnO2 nanopowders is described. Pure and highly stable Sn1-xCoxO2-delta (0 <= x <= 0.15) crystalline nanoparticles were synthesized, with mean grain sizes <5 nm and the dopant element homogeneously distributed in the SnO2 matrix. The UV-visible diffuse reflectance spectra of the Sn1-xCoxO2-delta samples reveal red shifts, the optical bandgap energies decreasing with increasing Co concentration. The samples' Urbach energies were calculated and correlated with their bandgap energies. The photocatalytic activity of the Sn1-xCoxO2-delta samples was investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02% (w/w) of Sn0.95Co0.05O2-delta nanoparticles in 60 min of irradiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Mg alloys can be used as bioresorsable metallic implants. However, the high corrosion rate of magnesium alloys has limited their biomedical applications. Although Mg ions are essential to the human body, an excess may cause undesirable health effects. Therefore, surface treatments are required to enhance the corrosion resistance of magnesium parts, decreasing its rate to biocompatible levels and allowing its safe application as bioresorbable metallic implants. The application of biocompatible silane coatings is envisaged as a suitable strategy for retarding the corrosion process of magnesium alloys. In the current work, a new glycidoxypropyltrimethoxysilane (GPTMS) based coating was tested on AZ31 magnesium substrates subjected to different surface conditioning procedures before coating deposition. The surface conditioning included a short etching with hydrofluoric acid (HF) or a dc polarisation in alkaline electrolyte. The silane coated samples were immersed in Hank's solution and the protective performance of the coating was studied through electrochemical impedance spectroscopy (EIS). The EIS data was treated by new equivalent circuit models and the results revealed that the surface conditioning process plays a key role in the effectiveness of the silane coating. The HF treated samples led to the highest impedance values and delayed the coating degradation, compared to the mechanically polished samples or to those submitted to dc polarisation.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.
Resumo:
The activity and selectivity of bi-functional carbon-supported platinum catalysts for the hydroisomerization of n-alkanes have been studied. The influence of the properties of the carbon support on the performance of the catalysts were investigated by incorporating the metallic function on a series of carbons with varied porosity (microporous: GL-50 from Norit, and mesoporous: CMK-3) and surface chemistry (modified by wet oxidation). The characterization results achieved with H-2 chemisorption and TEM showed differences in surface metal concentrations and metal-support interactions depending on the support composition. The highest metal dispersion was achieved after oxidation of the carbon matrix in concentrated nitric acid, suggesting that the presence of surface functional sites distributed in inner and outer surface favors a homogeneous metal distribution. On the other hand, the higher hydrogenating activity of the catalysts prepared with the mesoporous carbon pointed out that a fast molecular traffic inside the pores plays an important role in the catalysts performance. For n-decane hydroisomerization of long chain n-alkanes, higher activities were obtained for the catalysts with an optimized acidity and metal dispersion along with adequate porosity, pointing out the importance of the support properties in the performance of the catalysts.
Resumo:
Relatório de Estágio submetidoà Escola Superior de Teatro e Cinemapara cumprimento dos requisitos necessários à obtenção do grau de Mestre em Artes Performativas- especialização em Teatro-Música
Resumo:
Mg alloys are very susceptible to corrosion in physiological media. This behaviour limits its widespread use in biomedical applications as bioresorbable implants, but it can be controlled by applying protective coatings. On one hand, coatings must delay and control the degradation process of the bare alloy and, on the other hand, they must be functional and biocompatible. In this study a biocompatible polycaprolactone (PCL) coating was functionalised with nano hydroxyapatite (HA) particles for enhanced biocompatibility and with an antibiotic, cephalexin, for anti-bacterial purposes and applied on the AZ31 alloy. The chemical composition and the surface morphology of the coated samples, before and after the corrosion tests, were studied by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX) and Raman. The results showed that the presence of additives induced the formation of agglomerates and defects in the coating that resulted in the formation of pores during immersion in Hanks' solution. The corrosion resistance of the coated samples was studied in Hank's solution by electrochemical impedance spectroscopy (EIS). The results evidenced that all the coatings can provide corrosion protection of the bare alloy. However, in the presence of the additives, corrosion protection decreased. The wetting behaviour of the coating was evaluated by the static contact angle method and it was found that the presence of both hydroxyapatite and cephalexin increased the hydrophilic behaviour of the surface. The results showed that it is possible to tailor a composite coating that can store an antibiotic and nano hydroxyapatite particles, while allowing to control the in-vitro corrosion degradation of the bioresorbable Mg alloy AZ31. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this work, alpha-Co(OH)(2) is electrodeposited onto carbon nanofoam forming a composite electrode operating in a potential window of 2 V in aqueous medium. Prior to electrodeposition, the carbon nanofoam substrate is subjected to a functionalization process, which leads to an increase of about 40% in its specific capacitance value. Formation of cobalt hydroxide clusters onto the functionalized carbon nanofoam by pulse electrodeposition further enhances the specific capacitance of the electrode. The combination of these factors with an enlarged working potential window, results in a material with specific capacitance close to 300 F g(-1) at current density of 1 A g(-1), considering the total mass loading of the composite. This suggests the potential application of the prepared composites in high energy density electrochemical supercapacitors. (c) 2015 Elsevier B.V. All rights reserved.