24 resultados para receiver function
Resumo:
3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.
Resumo:
This paper describes the hardware implementation of a High-Rate MIMO Receiver in an FPGA for three modulations, namely BPSK, QPSK and 16-QAM based on the Alamouti scheme. The implementation with 16-QAM achieves more than 1.6 Gbps with 66% of the resources of a medium-sized Virtex-4 FPGA. This results indicate that the Alamouti scheme is a good design option for hardware implementation of a high-rate MIMO receiver. Also, using an FPGA, the modulation can be dynamically changed on demand.
Resumo:
A non-coherent vector delay/frequency-locked loop architecture for GNSS receivers is proposed. Two dynamics models are considered: PV (position and velocity) and PVA (position, velocity, and acceleration). In contrast with other vector architectures, the proposed approach does not require the estimation of signals amplitudes. Only coarse estimates of the carrier-to-noise ratios are necessary.
Resumo:
This paper presents the implementation of the OFDM demodulator and the Viterbi decoder, proposed as part of a wireless High Definition video receiver to be integrated in an FPGA. These blocks were implemented in a Xilinx Virtex-6 FPGA. The complete system was previously modeled and simulated using MATLAB/Simulink to extract importante hardware characteristics for the FPGA implementation.
Resumo:
We have conducted a P and S receiver functions [PRFs and SRFs] analysis for 19 seismic stations on the Iberia and western Mediterranean. In the transition zone [TZ] the PRFs analysis reveals a band [from Gibraltar to Balearic] increased by 10-20 km relative to the standard 250 km. The TZ thickness variations are strongly correlated with the P660s times in PRFs. We interpret the variable depth of the 660-km discontinuity as an effect of subduction. Over the anomalous TZ we found a reduced velocity zone in the upper mantle. Joint inversion of PRFs and SRFs reveals a subcrustal high S velocity lid and an underlying LVZ. A reduction of the S velocity in the LVZ is less than 10%. The Gutenberg discontinuity is located at 65±5 km, but in several models sampling the Mediterranean, the lid is missing or its thickness is reduced to ~30 km. In the Gibraltar and North Africa this boundary is located at ~100 km. The lid Vp/Vs beneath Betics is reduced relative to the standard 1.8. Another evidence of the Vp/Vs anomaly is provided by S410p phase late arrivals in the SRFs. The azimuthal anisotropy analysis with a new technology was conducted at 5 stations and at 2 groups of stations. The fast direction in the uppermost mantle layer is ~90º in Iberian Massif. In Balearic is in the azimuth of ~120º. At a depth of ~60 km the direction becomes 90º. Anisotropy in the upper layer can be interpreted as frozen, whereas anisotropy in the lower layer is active, corresponding to the present-day or recent flow. The effect of the asthenosphere in the SKS splitting is much larger than the effect of the subcrustal lithosphere.
Resumo:
Background - Medical image perception research relies on visual data to study the diagnostic relationship between observers and medical images. A consistent method to assess visual function for participants in medical imaging research has not been developed and represents a significant gap in existing research. Methods - Three visual assessment factors appropriate to observer studies were identified: visual acuity, contrast sensitivity, and stereopsis. A test was designed for each, and 30 radiography observers (mean age 31.6 years) participated in each test. Results - Mean binocular visual acuity for distance was 20/14 for all observers. The difference between observers who did and did not use corrective lenses was not statistically significant (P = .12). All subjects had a normal value for near visual acuity and stereoacuity. Contrast sensitivity was better than population norms. Conclusion - All observers had normal visual function and could participate in medical imaging visual analysis studies. Protocols of evaluation and populations norms are provided. Further studies are necessary to understand fully the relationship between visual performance on tests and diagnostic accuracy in practice.
Resumo:
Introduction - Poultry workers can be at an increased risk of occupational respiratory diseases, like asthma, chronic obstructive pulmonary disease and extrinsic allergic alveolitis. Spirometry screening is fundamental to early diagnosis trough the identification of related ventilatory defects. Purpose - We aimed to assess the prevalence of lung function abnormalities in poultry workers.
Resumo:
A double pi'npin heterostructure based on amorphous SiC has a non linear spectral gain which is a function of the signal wavelength that impinges on its front or back surface. An impulse of a configurable length and amplitude is applied to a 390 nm LED which illuminates one of the sensor surfaces, followed by a time period without any illumination after which an input signal with a different wavelength is impinged upon the front surface. Results show that the intensity and duration of the impulse illumination of the surfaces influences the sensor's response with different output for the same input signal. This paper studies this effect and proposes an application as a short term light memory. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
P and S receiver functions (PRF and SRF) from 19 seismograph stations in the Gibraltar Arc and the Iberian Massif reveal new details of the regional deep structure. Within the high-velocity mantle body below southern Spain the 660-km discontinuity is depressed by at least 20 km. The Ps phase from the 410-km discontinuity is missing at most stations in the Gibraltar Arc. A thin (similar to 50 km) low-S-velocity layer atop the 410-km discontinuity is found under the Atlantic margin. At most stations the S410p phase in the SRFs arrives 1.0-2.5 s earlier than predicted by IASP91 model, but, for the propagation paths through the upper mantle below southern Spain, the arrivals of S410p are delayed by up to +1.5 s. The early arrivals can be explained by elevated Vp/Vs ratio in the upper mantle or by a depressed 410-km discontinuity. The positive residuals are indicative of a low (similar to 1.7 versus similar to 1.8 in IASP91) Vp/Vs ratio. Previously, the low ratio was found in depleted lithosphere of Precambrian cratons. From simultaneous inversion of the PRFs and SRFs we recognize two types of the mantle: 'continental' and 'oceanic'. In the 'continental' upper mantle the S-wave velocity in the high-velocity lid is 4.4-4.5 km s(-1), the S-velocity contrast between the lid and the underlying mantle is often near the limit of resolution (0.1 km s(-1)), and the bottom of the lid is at a depth reaching 90 100 km. In the 'oceanic' domain, the S-wave velocities in the lid and the underlying mantle are typically 4.2-4.3 and similar to 4.0 km s(-1), respectively. The bottom of the lid is at a shallow depth (around 50 km), and at some locations the lid is replaced by a low S-wave velocity layer. The narrow S-N-oriented band of earthquakes at depths from 70 to 120 km in the Alboran Sea is in the 'continental' domain, near the boundary between the 'continental' and 'oceanic' domains, and the intermediate seismicity may be an effect of ongoing destruction of the continental lithosphere.