47 resultados para micro-electron capture detection
Resumo:
In order to evaluate the capacity of laser scanning cytometry (LSC) to detect acid-fast bacilli directly on clinical samples, a comparison between Kinyoun-stained smears analyzed under light microscopy and propidium iodide-auramine-stained smears analyzed by LSC was performed. The results were compared with those for culture on BACTEC MGIT 960. LSC is a new, reliable methodology to detect Mycobacteria.
Resumo:
Faz-se nesta dissertação a análise do movimento humano utilizando sinais de ultrassons refletidos pelos diversos membros do corpo humano, designados por assinaturas de ultrassons. Estas assinaturas são confrontadas com os sinais gerados pelo contato dos membros inferiores do ser humano com o chão, recolhidos de forma passiva. O método seguido teve por base o estudo das assinaturas de Doppler e micro-Doppler. Estas assinaturas são obtidas através do processamento dos ecos de ultrassons recolhidos, com recurso à Short-Time Fourier Transform e apresentadas sobre a forma de espectrograma, onde se podem identificar os desvios de frequência causados pelo movimento das diferentes partes do corpo humano. É proposto um algoritmo inovador que, embora possua algumas limitações, é capaz de isolar e extrair de forma automática algumas das curvas e parâmetros característicos dos membros envolvidos no movimento humano. O algoritmo desenvolvido consegue analisar as assinaturas de micro-Doppler do movimento humano, estimando diversos parâmetros tais como o número de passadas realizadas, a cadência da passada, o comprimento da passada, a velocidade a que o ser humano se desloca e a distância percorrida. Por forma a desenvolver, no futuro, um classificador capaz de distinguir entre humanos e outros animais, são também recolhidas e analisadas assinaturas de ultrassons refletidas por dois animais quadrúpedes, um canino e um equídeo. São ainda estudadas as principais características que permitem classificar o tipo de animal que originou a assinatura de ultrassons. Com este estudo mostra-se ser possível a análise de movimento humano por ultrassons, havendo características nas assinaturas recolhidas que permitem a classificação do movimento como humano ou não humano. Do trabalho desenvolvido resultou ainda uma base de dados de assinaturas de ultrassons de humanos e animais que permitirá suportar trabalho de investigação e desenvolvimento futuro.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
Resumo:
The transducer consists of a semiconductor device based on two stacked -i-n heterostructures that were designed to detect the emissions of the fluorescence resonance energy transfer between fluorophores in the cyan (470 nm) and yellow (588 nm) range of the spectrum. This research represents a preliminary study on the use of such wavelength-sensitive devices as photodetectors for this kind of application. The device was characterized through optoelectronic measurements concerning spectral response measurements under different electrical and optical biasing conditions. To simulate the fluorescence resonance energy transfer (FRET) pairs, a chromatic time-dependent combination of cyan and yellow wavelengths was applied to the device. The generated photocurrent was measured under reverse and forward bias to read out the output photocurrent signal. A different wavelength-biasing light was also superimposed. Results show that under reverse bias, the photocurrent signal presents four separate levels, each one assigned to the different wavelength combinations of the FRET pairs. If a blue background is superimposed, the yellow channel is enhanced and the cyan suppressed, while under red irradiation, the opposite behavior occurs. So, under suitable biasing light, the transducer is able to detect separately the cyan and yellow fluorescence pairs. An electrical model, supported by a numerical simulation, supports the transduction mechanism of the device.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The formation of amyloid structures is a neuropathological feature that characterizes several neurodegenerative disorders, such as Alzheimer´s and Parkinson´s disease. Up to now, the definitive diagnosis of these diseases can only be accomplished by immunostaining of post mortem brain tissues with dyes such Thioflavin T and congo red. Aiming at early in vivo diagnosis of Alzheimer´s disease (AD), several amyloid-avid radioprobes have been developed for b-amyloid imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT). The aim of this paper is to present a perspective of the available amyloid imaging agents, special those that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval.
Resumo:
It is presented in this paper a study on the photo-electronic properties of multi layer a-Si: H/a-SiC: H p-i-n-i-p structures. This study is aimed to give an insight into the internal electrical characteristics of such a structure in thermal equilibrium, under applied Was and under different illumination condition. Taking advantage of this insight it is possible to establish a relation among-the electrical behavior of the structure the structure geometry (i.e. thickness of the light absorbing intrinsic layers and of the internal n-layer) and the composition of the layers (i.e. optical bandgap controlled through percentage of carbon dilution in the a-Si1-xCx: H layers). Showing an optical gain for low incident light power controllable by means of externally applied bias or structure composition, these structures are quite attractive for photo-sensing device applications, like color sensors and large area color image detector. An analysis based on numerical ASCA simulations is presented for describing the behavior of different configurations of the device and compared with experimental measurements (spectral response and current-voltage characteristic). (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.
Resumo:
This study evaluates the dosimetric impact caused by an air cavity located at 2 mm depth from the top surface in a PMMA phantom irradiated by electron beams produced by a Siemens Primus linear accelerator. A systematic evaluation of the effect related to the cavity area and thickness as well as to the electron beam energy was performed by using Monte Carlo simulations (EGSnrc code), Pencil Beam algorithm and Gafchromic EBT2 films. A home-PMMA phantom with the same geometry as the simulated one was specifically constructed for the measurements. Our results indicate that the presence of the cavity causes an increase (up to 70%) of the dose maximum value as well as a shift forward of the position of the depthedose curve, compared to the homogeneous one. Pronounced dose discontinuities in the regions close to the lateral cavity edges are observed. The shape and magnitude of these discontinuities change with the dimension of the cavity. It is also found that the cavity effect is more pronounced (6%) for the 12 MeV electron beam and the presence of cavities with large thickness and small area introduces more significant variations (up to 70%) on the depthedose curves. Overall, the Gafchromic EBT2 film measurements were found in agreement within 3% with Monte Carlo calculations and predict well the fine details of the dosimetric change near the cavity interface. The Pencil Beam calculations underestimate the dose up to 40% compared to Monte Carlo simulations; in particular for the largest cavity thickness (2.8 cm).
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. In this paper, a new computer-aided diagnosis (CAD) system for steatosis classification, in a local and global basis, is presented. Bayes factor is computed from objective ultrasound textural features extracted from the liver parenchyma. The goal is to develop a CAD screening tool, to help in the steatosis detection. Results showed an accuracy of 93.33%, with a sensitivity of 94.59% and specificity of 92.11%, using the Bayes classifier. The proposed CAD system is a suitable graphical display for steatosis classification.
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.
Resumo:
A 17.6 kb DNA fragment from the right arm of chromosome VII of Saccharomyces cerevisiae has been sequenced and analysed. The sequence contains twelve open reading frames (ORFs) longer than 100 amino acids. Three genes had already been cloned and sequenced: CCT, ADE3 and TR-I. Two ORFs are similar to other yeast genes: G7722 with the YAL023 (PMT2) and PMT1 genes, encoding two integral membrane proteins, and G7727 with the first half of the genes encoding elongation factors 1gamma, TEF3 and TEF4. Two other ORFs, G7742 and G7744, are most probably yeast orthologues of the human and Paracoccus denitrificans electron-transferring flavoproteins (beta chain) and of the Escherichia coli phosphoserine phosphohydrolase. The five remaining identified ORFs do not show detectable homology with other protein sequences deposited in data banks. The sequence has been deposited in the EMBL data library under Accession Number Z49133.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
Micro- and nano-patterned materials are of great importance for the design of new nanoscale electronic, optical and mechanical devices, ranging from sensors to displays. A prospective system that can support a designed functionality is elastomeric polyurethane thin films with nano- or micromodulated surface structures ("wrinkles"). These wrinkles can be induced on different lengthscales by mechanically stretching the films, without the need for any sophisticated lithographic techniques. In the present article we focus on the experimental control of the wrinkling process. A simple model for wrinkle formation is also discussed, and some preliminary results reported. Hierarchical assembly of these tunable structures paves the way for the development of a new class of materials with a wide range of applications, from electronics to biomedicine.
Resumo:
A celulose é o polímero renovável mais abundante do mundo. É conhecido pela sua excelente biocompatibilidade, propriedades térmicas e mecânicas. A celulose assim como os polipéptideos e o ADN, pertence a uma família de moléculas orgânicas que dão origem à formação de fases líquidas cristalinas (LCs) colestéricas. A Passiflora Edulis, tal como outras plantas trepadeiras, possui longas e flexíveis gavinhas que permitem à planta encontrar um suporte para se fixar. As gavinhas podem assumir a forma de espirais ou de hélices consoante sejam sustentadas por apenas uma ou por ambas as extremidades. As hélices apresentam muitas vezes duas porções helicoidais, uma esquerda e outra direita, separadas por um segmento recto denominado perversão. Este comportamento é consequência da curvatura intrínseca das gavinhas produzidas pela planta trepadeira. O mesmo comportamento pode ser observado em micro e nanofibras celulósicas fabricadas a partir de soluções líquido-cristalinas, numa escala três a quatro ordens de grandeza inferior à das gavinhas. Este facto sugere que o modelo físico utilizado tenha invariância de escala. Neste trabalho é feito o estudo de fibras e jactos que imitam as estruturas helicoidais apresentadas pelas gavinhas das plantas trepadeiras. As fibras e jactos são produzidos a partir de soluções líquidas cristalinas celulósicas. De modo a determinar as características morfológicas e estruturais, que contribuem para a curvatura das fibras, foram utilizadas técnicas de imagem por ressonância magnética (MRI), microscopia óptica com luz polarisada (MOP), microscopia electrónica de varrimento (SEM) e microscopia de força atómica (AFM) . A variação da forma das estruturas helicoidais com a temperatura parece ser relevante para o fabrico de membranas não tecidas para aplicação em sensores termo-mecânicos.