24 resultados para Volenti non fit injuria
Resumo:
We introduce the notions of equilibrium distribution and time of convergence in discrete non-autonomous graphs. Under some conditions we give an estimate to the convergence time to the equilibrium distribution using the second largest eigenvalue of some matrices associated with the system.
Resumo:
In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.
Resumo:
Patients with inflammatory bowel diseases (IBD) have an excess risk of certain gastrointestinal cancers. Much work has focused on colon cancer in IBD patients, but comparatively less is known about other more rare cancers. The European Crohn's and Colitis Organization established a pathogenesis workshop to review what is known about these cancers and formulate proposals for future studies to address the most important knowledge gaps. This article reviews the current state of knowledge about small bowel adenocarcinoma, ileo-anal pouch and rectal cuff cancer, and anal/perianal fistula cancers in IBD patients.
Resumo:
Glucose monitoring in vivo is a crucial issue for gaining new understanding of diabetes. Glucose binding protein (GBP) fused to two fluorescent indicator proteins (FLIP) was used in the present study such as FLIP-glu- 3.2 mM. Recombinant Escherichia coli whole-cells containing genetically encoded nanosensors as well as cell-free extracts were immobilized either on inner epidermis of onion bulb scale or on 96-well microtiter plates in the presence of glutaraldehyde. Glucose monitoring was carried out by Förster Resonance Energy Transfer (FRET) analysis due the cyano and yellow fluorescent proteins (ECFP and EYFP) immobilized in both these supports. The recovery of these immobilized FLIP nanosensors compared with the free whole-cells and cell-free extract was in the range of 50–90%. Moreover, the data revealed that these FLIP nanosensors can be immobilized in such solid supports with retention of their biological activity. Glucose assay was devised by FRET analysis by using these nanosensors in real samples which detected glucose in the linear range of 0–24 mM with a limit of detection of 0.11 mM glucose. On the other hand, storage and operational stability studies revealed that they are very stable and can be re-used several times (i.e. at least 20 times) without any significant loss of FRET signal. To author's knowledge, this is the first report on the use of such immobilization supports for whole-cells and cell-free extract containing FLIP nanosensor for glucose assay. On the other hand, this is a novel and cheap high throughput method for glucose assay.
Resumo:
A new family of eight ruthenium(II)-cyclopentadienyl bipyridine derivatives, bearing nitrogen, sulfur, phosphorous and carbonyl sigma bonded coligands, has been synthesized. Compounds bearing nitrogen bonded coligands were found to be unstable in aqueous solution, while the others presented appropriate stabilities for the biologic assays and pursued for determination of IC50 values in ovarian (A2780) and breast (MCF7 and MDAMB231) human cancer cell lines. These studies were also carried out for the [5: HSA] and [6: HSA] adducts (HSA = human serum albumin) and a better performance was found for the first case. Spectroscopic, electrochemical studies by cyclic voltammetry and density functional theory calculations allowed us to get some understanding on the electronic flow directions within the molecules and to find a possible clue concerning the structural features of coligands that can activate bipyridyl ligands toward an increased cytotoxic effect. X-ray structure analysis of compound [Ru(eta(5)-C5H5)(bipy)(PPh3)][PF6] (7; bipy = bipyridine) showed crystallization on C2/c space group with two enantiomers of the [Ru(eta(5)-C5H5)(bipy)(PPh3)](+) cation complex in the racemic crystal packing. (C) 2015 Elsevier Inc All rights reserved.
Resumo:
An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented with a numerical study.
Resumo:
Wireless communications had a great development in the last years and nowadays they are present everywhere, public and private, being increasingly used for different applications. Their application in the business of sports events as a means to improve the experience of the fans at the games is becoming essential, such as sharing messages and multimedia material on social networks. In the stadiums, given the high density of people, the wireless networks require very large data capacity. Hence radio coverage employing many small sized sectors is unavoidable. In this paper, an antenna is designed to operate in the Wi-Fi 5GHz frequency band, with a directive radiation pattern suitable to this kind of applications. Furthermore, despite the large bandwidth and low losses, this antenna has been developed using low cost, off-the-shelf materials without sacrificing quality or performance, essential to mass production. © 2015 EurAAP.
Resumo:
A new family of eight ruthenium(II)-cyclopentadienyl bipyridine derivatives, bearing nitrogen, sulfur, phosphorous and carbonyl sigma bonded coligands, has been synthesized. Compounds bearing nitrogen bonded coligands were found to be unstable in aqueous solution, while the others presented appropriate stabilities for the biologic assays and pursued for determination of IC50 values in ovarian (A2780) and breast (MCF7 and MDAMB231) human cancer cell lines. These studies were also carried out for the [5: HSA] and [6: HSA] adducts (HSA=human serum albumin) and a better performance was found for the first case. Spectroscopic, electrochemical studies by cyclic voltammetry and density functional theory calculations allowed us to get some understanding on the electronic flow directions within the molecules and to find a possible clue concerning the structural features of coligands that can activate bipyridyl ligands toward an increased cytotoxic effect. X-ray structure analysis of compound [Ru(η(5)-C5H5)(bipy)(PPh3)][PF6] (7; bipy=bipyridine) showed crystallization on C2/c space group with two enantiomers of the [Ru(η(5)-C5H5)(bipy)(PPh3)](+) cation complex in the racemic crystal packing.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.