26 resultados para Remain
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do grau de mestre em Ciências da Educação Especialidade Educação Especial
Resumo:
One of the main trends in workplace aggression research is studying its antecedents. But the literature also reveals that some predictors remain understudied, like organizational change [1]. Additionally, possible mediators of this relationship were not investigated. The main objective of this research is studding the mediating effect of the leader political behavior (soft and hard version) on the relationship between organizational change and workplace aggression. Participants representing a wide variety of jobs across many organizations were surveyed. The measures used in this research are an Organizational Change Questionnaire climate of change, processes, and readiness [2], a Workplace Aggression Scale [e.g. 3, 4] and a Political Behavior Questionnaire [5]. The results of the study and its theoretical and practical implications will be presented and discussed.
Resumo:
Mestrado em Controlo da Gestão e dos Negócios
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.
Resumo:
Purpose: Pressure ulcers are a high cost, high volume issue for health and medical care providers, having a detrimental effect on patients and relatives. Pressure ulcer prevention is widely covered in the literature, but little has been published regarding the risk to patients in the radiographical setting. This review of the current literature is to identify findings relevant to radiographical context. Methods: Literature searching was performed using Science Direct and Medline databases. The search was limited to articles published in the last ten years to remain current and excluded studies containing participants less than 17 years of age. In total 14 studies were acquired; three were excluded as they were not relevant. The remaining 11 studies were compared and reviewed. Discussion: Eight of the studies used ‘healthy’ participants and three used symptomatic participants. Nine studies explored interface pressure with a range of pressure mat technologies, two studies measured shear (MRI finite element modelling, and a non-invasive instrument), and one looked at blood flow and haemoglobin oxygenation. A range of surfaces were considered from trauma, nursing and surgical backgrounds for their ability to reduce pressure including standard mattresses, high specification mattresses, rigid and soft layer spine boards, various overlays (gel, air filled, foam). Conclusion: The current literature is not appropriate for the radiographic patient and cannot be extrapolated to a radiologic context. Sufficient evidence is presented in this review to support the need for further work specific to radiography in order to minimise the development of PU in at risk patients.
Resumo:
The market for emulsion polymers (latexes) is large and growing at the expense of other manufacturing processes that emit higher amounts of volatile organic solvents. The paint industry is not an exception and solvent-borne paints have been gradually substituted by aqueous paints. In their life-cycle, much of the aqueous paint used for architectural or decorative purposes will eventually be discharged into wastewater treatment facilities, where its polymeric nanoparticles (mainly acrylic and styrene-acrylic) can work as xenobiotics to the microbial communities present in activated sludge. It is well established that these materials are biocompatible at macroscopic scale. But is their behaviour the same at nanoscale? What happens to the polymeric nanoparticles during the activated sludge process? Do nanoparticles agregate and are discharged together with the sludge or remain in emulsion? How do microorganisms interact with these nanoparticles? Are nanoparticles degradated by them? Are they adsorbed? Are these nanoparticles toxic to the microbial community? To study the influence of these xenobiotics in the activated sludge process, an emulsion of cross-linked poly(butyl methacrylate) nanoparticles of ca. 50 nm diameter was produced and used as model compound. Activated sludge from a wastewater treatment plant was tested by the OCDE’s respiration inhibition test using several concentrations of PBMA nanoparticles. Particle aggregation was followed by Dynamic Light Scattering and microorganism surfaces were observed by Atomic Force Microscopy. Using sequential batch reactors (SBRs) and continuous reactors, both inoculated with activated sludge, the consumption of carbon, ammonia, nitrite and nitrate was monitored and compared, in the presence and absence of nanoparticles. No particles were detected in all treated waters by Dynamic Light Scattering. This can either mean that microorganisms can efficiently remove all polymer nanoparticles or that nanoparticles tend to aggregate and be naturally removed by precipitation. Nevertheless respiration inhibition tests demonstrated that microorganisms consume more oxygen in the presence of nanoparticles, which suggests a stress situation. It was also observed a slight decrease in the efficiency of nitrification in the presence of nanoparticles. AFM images showed that while the morphology of some organisms remained the same both in the presence and absence of nanoparticles, others assumed a rough surface with hilly like shapes of ca. 50 nm when exposed to nanoparticles. Nanoparticles are thus likely to be either incorporated or adsorbed at the surface of some organisms, increasing the overall respiration rate and decreasing nitrification efficiency. Thus, despite its biocompatibility at macroscopic scale, PBMA is likely to be no longer innocuous at nanoscale.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ciências da Educação, especialidade Supervisão em Educação
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclo do Ensino Básico
Resumo:
Mestrado em Gestão e Empreendedorismo
Resumo:
Population dynamics have been attracting interest since many years. Among the considered models, the Richards’ equations remain one of the most popular to describe biological growth processes. On the other hand, Allee effect is currently a major focus of ecological research, which occurs when positive density dependence dominates at low densities. In this chapter, we propose the dynamical study of classes of functions based on Richards’ models describing the existence or not of Allee effect. We investigate bifurcation structures in generalized Richards’ functions and we look for the conditions in the (β, r) parameter plane for the existence of a weak Allee effect region. We show that the existence of this region is related with the existence of a dovetail structure. When the Allee limit varies, the weak Allee effect region disappears when the dovetail structure also disappears. Consequently, we deduce the transition from the weak Allee effect to no Allee effect to this family of functions. To support our analysis, we present fold and flip bifurcation curves and numerical simulations of several bifurcation diagrams.