27 resultados para Distribuições a priori conjugadas
Resumo:
Mestrado em Controlo de Gestão e dos Negócios
Resumo:
International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Ramo de especialização: Terapia com Radiações
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
The purpose of this paper is to discuss the linear solution of equality constrained problems by using the Frontal solution method without explicit assembling. Design/methodology/approach - Re-written frontal solution method with a priori pivot and front sequence. OpenMP parallelization, nearly linear (in elimination and substitution) up to 40 threads. Constraints enforced at the local assembling stage. Findings - When compared with both standard sparse solvers and classical frontal implementations, memory requirements and code size are significantly reduced. Research limitations/implications - Large, non-linear problems with constraints typically make use of the Newton method with Lagrange multipliers. In the context of the solution of problems with large number of constraints, the matrix transformation methods (MTM) are often more cost-effective. The paper presents a complete solution, with topological ordering, for this problem. Practical implications - A complete software package in Fortran 2003 is described. Examples of clique-based problems are shown with large systems solved in core. Social implications - More realistic non-linear problems can be solved with this Frontal code at the core of the Newton method. Originality/value - Use of topological ordering of constraints. A-priori pivot and front sequences. No need for symbolic assembling. Constraints treated at the core of the Frontal solver. Use of OpenMP in the main Frontal loop, now quantified. Availability of Software.
Resumo:
In the present paper we focus on the performance of clustering algorithms using indices of paired agreement to measure the accordance between clusters and an a priori known structure. We specifically propose a method to correct all indices considered for agreement by chance - the adjusted indices are meant to provide a realistic measure of clustering performance. The proposed method enables the correction of virtually any index - overcoming previous limitations known in the literature - and provides very precise results. We use simulated datasets under diverse scenarios and discuss the pertinence of our proposal which is particularly relevant when poorly separated clusters are considered. Finally we compare the performance of EM and KMeans algorithms, within each of the simulated scenarios and generally conclude that EM generally yields best results.
Resumo:
This work provides an assessment of layerwise mixed models using least-squares formulation for the coupled electromechanical static analysis of multilayered plates. In agreement with three-dimensional (3D) exact solutions, due to compatibility and equilibrium conditions at the layers interfaces, certain mechanical and electrical variables must fulfill interlaminar C-0 continuity, namely: displacements, in-plane strains, transverse stresses, electric potential, in-plane electric field components and transverse electric displacement (if no potential is imposed between layers). Hence, two layerwise mixed least-squares models are here investigated, with two different sets of chosen independent variables: Model A, developed earlier, fulfills a priori the interiaminar C-0 continuity of all those aforementioned variables, taken as independent variables; Model B, here newly developed, rather reduces the number of independent variables, but also fulfills a priori the interlaminar C-0 continuity of displacements, transverse stresses, electric potential and transverse electric displacement, taken as independent variables. The predictive capabilities of both models are assessed by comparison with 3D exact solutions, considering multilayered piezoelectric composite plates of different aspect ratios, under an applied transverse load or surface potential. It is shown that both models are able to predict an accurate quasi-3D description of the static electromechanical analysis of multilayered plates for all aspect ratios.
Resumo:
Endmember extraction (EE) is a fundamental and crucial task in hyperspectral unmixing. Among other methods vertex component analysis ( VCA) has become a very popular and useful tool to unmix hyperspectral data. VCA is a geometrical based method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Many Hyperspectral imagery applications require a response in real time or near-real time. Thus, to met this requirement this paper proposes a parallel implementation of VCA developed for graphics processing units. The impact on the complexity and on the accuracy of the proposed parallel implementation of VCA is examined using both simulated and real hyperspectral datasets.
Resumo:
Many Hyperspectral imagery applications require a response in real time or near-real time. To meet this requirement this paper proposes a parallel unmixing method developed for graphics processing units (GPU). This method is based on the vertex component analysis (VCA), which is a geometrical based method highly parallelizable. VCA is a very fast and accurate method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Experimental results obtained for simulated and real hyperspectral datasets reveal considerable acceleration factors, up to 24 times.
Resumo:
A separação de dados hiperespectrais pretende determinar quais as substâncias presentes numa imagem e quais as suas concentrações em cada pixel. Esta comunicação apresenta um método não-supervisionado, denominado de Análise de Componentes Dependentes (DECA), que efectua a separação destes dados automaticamente. Este método assume que cada pixel é uma mistura linear das assinaturas (reflectâncias ou radiâncias) das substâncias presentes pesadas pelas respectivas concentrações (abundâncias). Estas abundâncias são modeladas por misturas de distribuições de Dirichlet, que por si garantem as restrições de não-negatividade e soma unitária impostas pelo processo de aquisição. A matriz de assinaturas é estimada por um algoritmo Esperança-Maximização generalizado (GEM). O método DECA tem um desempenho melhor que os métodos baseados em análise de componentes independentes e que os métodos baseados na geometria dos dados. Nesta comunicação apresentam-se resultados desta metodologia, com dados simulados (baseados em reflectâncias espectrais da base de dados do laboratório USGS) e com dados hiperespectrais reais adquiridos pelo sensor AVIRIS, ilustrando a potencialidade da técnica.
Resumo:
In the present paper we compare clustering solutions using indices of paired agreement. We propose a new method - IADJUST - to correct indices of paired agreement, excluding agreement by chance. This new method overcomes previous limitations known in the literature as it permits the correction of any index. We illustrate its use in external clustering validation, to measure the accordance between clusters and an a priori known structure. The adjusted indices are intended to provide a realistic measure of clustering performance that excludes agreement by chance with ground truth. We use simulated data sets, under a range of scenarios - considering diverse numbers of clusters, clusters overlaps and balances - to discuss the pertinence and the precision of our proposal. Precision is established based on comparisons with the analytical approach for correction specific indices that can be corrected in this way are used for this purpose. The pertinence of the proposed correction is discussed when making a detailed comparison between the performance of two classical clustering approaches, namely Expectation-Maximization (EM) and K-Means (KM) algorithms. Eight indices of paired agreement are studied and new corrected indices are obtained.